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Abstract— Knowledge-based systems (KBS) should be able to 

explain their results to improve the understanding and credibility of 
their answers by users. However, most KBS explanation 
components cannot be easily reused by other applications, thus 
increasing the effort of implementing KBSs with explanation 
capabilities. In this paper we present WebExplain, an extension to 
Unified Problem-Solving Method Description Language (UPML), 
a KBS development framework. WebExplain is integrated with 
UPML generic components and can be easily reused during the 
development of other problem-solving methods and KBSs. 
WebExplain uses the Inference Web for enabling proof and 
explanation interoperability between distributed applications. We 
exemplify our approach by describing WebExplain’s use in the 
development of a problem-solving method and a KBS with 
explanation capabilities. 

 

1. INTRODUCTION 
Problem-solving methods (PSMs) describe the reasoning 
steps and the knowledge roles used during problem-solving 
processes, regardless of the problem domains.  PSMs can be 
reused by many applications. For example, a single PSM 
may be used to guide a knowledge acquisition process as 
well as to describe the design of a knowledge-based system 
[3].  

KBS users need to understand the manner in which 
solutions provided by a KBS were produced. They then need 
explanations that describe the PSM flow and the inference 
steps followed by the KBS in order to produce a result. 
Despite the development of explanation components by 
some knowledge engineering solutions (e.g., [1,2,15,17,18]), 
no known component is able to explain answers from 
general PSM implementations. Some KBS can generate 
explanations based on generic tasks or meta-rules, but we 
are unaware of any explanation approach that provides a 
systematic way to generate explanations for PSM 
implementations or that can be easily reused for the 
development of other KBSs, thus reducing the effort of 
implementing explanatory KBSs.  This paper describes an 
extension of the Unified Problem-Solving Method 
Description Language (UPML) [4]—, a KBS development 
framework, by providing a reusable component with 

explanation capabilities for KBSs. This component, called 
WebExplain, has two main characteristics: (i) It is integrated 
with UPML generic components: PSM, Task and Ontologies 
(i.e., Method Ontology and Task Ontology). In  UPML, a 
PSM, a Task and their ontologies can be reused in several 
domains in order to develop several and different KBSs. 
Hence, we are leveraging UPML and benefiting from the 
reusability of the UPML infrastructure, thereby reducing the 
cost of development for Explainable KBS; (ii) It generates 
justifications for the KBS results in the Proof Markup 
Language (PML) [11]. PML is the proof format of the 
Inference Web (IW), an infrastructure for Web explanations 
enabling applications to generate portable and distributed 
explanations for any of their answers [8]. PML has an 
OWL-DL encoding [10], and is thus compatible with 
semantic web applications in XML, RDF, and OWL. It 
includes content such as sources, inference rules, inference 
steps, and conclusions. Thus, proofs in PML can be shared 
with other distributed applications on the Web, besides 
using the IW infrastructure and tools to abstract proofs into 
explanations and to present them to users. KBSs are 
increasingly being deployed in heterogeneous environments 
such as the Web—for example, Web Services, and sharing 
information with other applications. Hence, there is a need 
for interoperable KBS responses and explanations, like 
PML.  

 
 

UPML-based KBS development makes reasoning 
processes explicit by implementing PSM as part of the 
applications. Thus, the capability of accessing PSMs at 
execution time can be leveraged to explain PSM answers at 
the reasoning level—the strategic level.  With the help of 
UPML patterns, one can enhance the quality of explanations 
by abstracting away task-specific reasoning steps from 
proofs and by keeping relevant information for response 
understanding. Explanations about the domain knowledge 
are generated from the KBS’s inference engine that chains 
the domain rules.  

We exemplify our approach by describing how to have 
reusability in both the development of PSM and the 
development of Explainable UPML-based KBS. 



 

2. BACKGROUND KNOWLEDGE 
Our approach for Explainable KBS integrates UPML and 
the IW frameworks.  
 
2.1. Inference Web 
Inference Web (IW) [8,9] is a framework for explaining 
reasoning tasks by storing, exchanging, combining, 
abstracting, annotating, comparing, and rendering answer 
justifications1 provided by reasoners embedded in 
applications.  IW justifications identify the KBS reasoning 
steps used to derive answers from input information. In 
addition to a language for answer justification, IW provides 
an infrastructure that includes: an extensible web-based 
registry containing details on information sources, reasoners, 
languages, and rewrite rules; a justification abstractor, and 
explanation browser. The browser is used to support 
navigation and presentations of answer justifications. The 
explainer is used to abstract machine-level justifications into 
human-level explanations. 

PML is the IW justification specification language and 
includes two major components for building proof trees: 
inference steps and node sets. A justification can then be 
defined as a tree of inference steps explaining the process of 
deriving answers, which are the final conclusions of a 
justification. Node sets represent both the antecedents and 
conclusions of inference steps. In other words, an inference 
step is the application of a single inference rule over a set of 
antecedents (encoded as node set conclusions) and deriving 
a consequent (also encoded as a node set conclusion). Each 
inference step contains pointers to the inference rule and 
variable mappings used.   

 
2.2. UPML 
The UPML framework [4] supports KBS modeling from 
reusable components, adapters, development guidelines, a 
description language, and tools. Distinct KBS software 
components are described by the UPML architecture: 
• PSM component that defines the control structure responsible 

for the coordination of subtasks, i.e., the definition of the 
subtask execution order;  

• Task component that defines the problem that should be 
solved by the KBS. Subtasks executed by the PSM component 
are also task components that implement the procedure in 
order to solve one part of the overall problem. Normally, the 
subtasks are implemented through an inference engine that 
executes the rules of the domain’s knowledge base; 

• Domain model component that describes the KBS domain 
knowledge, such as, domain rules;  

• Ontology component that provides the terminology used in 
other UPML components including the Method ontology, 
Task ontology, and Domain ontology.  

• Bridge component that establishes the relationships between 
two distinct UPML components. For example, the bridge 
between a subtask and the Domain Model sends the domain’s 

concepts and rules to be used in resolving the subtask. This 
component allows the Task components and PSM component 
to be implemented completely detached from the Domain 
Model, and only receive the domain’s knowledge and 
concepts at execution time. 

 
1 The terms justification and proof are used interchangeably in this paper. 

• Refiner component that specializes a UPML component for a 
specific application. 

UPML provides an approach to KBS development 
strongly centered on the reuse of its generic components and 
the use of ontologies. To resolve a knowledge intensive 
problem, a KBS developer can identify and reuse a specific 
PSM for a problem. The selected PSM must be already 
defined and implemented using the UPML architecture’s 
generic components: PSM, Task, and Ontology. The 
developer is left with the task of defining the Domain Model 
and the Domain Ontology. Moreover, the growing library of 
generic UPML components eases the development of PSM 
and KBS for other tasks. For example, Pinheiro, Furtado & 
Furtado [12] describe a set of UPML generic components 
implemented in Java including the abstract-and-match PSM 
[16] used for KBS that solve assessment problems.  

3. A UPML COMPONENT FOR KBS WEB 
EXPLANATIONS  

3.1. General Description 
In this section we introduce WebExplain, a UPML 
Explanation Component, responsible for generating PSM 
and Tasks justifications in PML. WebExplain justifications 
support two kinds of explanations: about the structure of the 
reasoning process implemented by PSMs (strategic 
explanations); and about the execution of subtasks, which 
are executions of domain’s rules and concepts (domain 
explanations).  

Figure 1 shows how WebExplain interacts with the PSM 
and Task components. Generally, WebExplain receives the 
subtask that is to be executed from the PSM component and 
associates all the inference steps generated from that point 
up to this subtask. Associations between the PML node sets   
and subtasks in justifications will ultimately determine the 
PSM’s order of execution. WebExplain receives the rules 
that have been fired from the Task component (subtasks). 
Rules are provided along with their conditions and actions 
and recorded as inference steps of each subtask. Note that 
the justification generation process does not interact with the 
Domain Model, i.e., the inference steps are received from 
generic UPML components. For this reason, WebExplain is 
domain-independent and can be reused by other 
applications. 

WebExplain is composed of the following classes: 
• The ProofGeneration class that is used for building inference 

steps from parameters received from the PSM and Task 
components. These parameters are represented as variable 
bindings in the justifications. This class is responsible for 
encoding the current state of some of the PSM variables as 
sentences in the justifications. PSM sentences are written in 
the Knowledge Interchange Format (KIF). 



 

• The Proof class represents a step in a justification. Inference 
steps are recorded from ProofGeneration and are identified by 
a conclusion and a set of antecedents. The conclusion of an 
inference step can be either derived or asserted.  If the 
conclusion is derived, the class keeps information about the 
inference engine and inference rule used to derive the 
conclusion, e.g., JEOPS and modus ponens, and information 
about the premises.. If the conclusion is asserted, the class 
keeps information about the source, e.g. a domain ontology. 
To identify the inference engine generating an inference step, 
we have created a relationship between this class and its 
subclasses, i.e., UPMLProof, JEOPSProof, JESSProof, etc. A 
single justification generated by the ProofGeneration class can 
represent inference steps generated by multiple inference 
engines such as JEOPS [5] or JESS [7], as well as inference 
steps generated by the PSM control structure. 

• The IWHandler class is responsible for mapping justifications, 
which are composed of Proof objects, into node sets and for 
generating PML documents.  
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forming a proof tree that portrays the order defined in the 
PSM. 

Domain explanations are generated from the inference 
steps associated with subtasks. For instance, a subtask can 
be implemented by means of the inference engine that 
executes rules of the domain’s knowledge base or by means 
of an algorithm. We will call these two cases, respectively, 
subtask implementation A and B. Due to the generality of 
our approach. WebExplain should not present restrictions to 
KBS developers regarding the inference engines that can be 
used. Information referring to the conditions and actions of 
each rule can be retrieved from a rule ontology without the 
need for customizing a specific inference engine.  

Figure 2 presents the classes that define the rules 
ontology. The Rule class defines domain rules with the 
name, description, rule-type, actions, and conditions slots. 
The actions and condition of a rule are expressions of class 
Expression defined by a name, description, expression-type, 
domain-variable, operator, and value slots. The domain-
variable slot represents a concept of the domain manipulated 
by an expression. This slot is of class Element, which is a 
concept from the Domain Ontology. Instances of these 
classes form the domain knowledge base, whose semantic 
interpretation is defined by the ontology of the domain and 
the conditional (conditions → actions). 

UPML COMPONENTS 

Tools like Protégé are widely used by the Knowledge 
Engineering community for creating ontologies. Moreover, 
tools of this category often possess plugins [14] that 
generate ontologies in several formats including OWL, Jess, 
and JEOPS. These capabilities offer two important 
advantages for our solution: (i) since rules are instantiated 
from the Rules ontology, they can be generated 
automatically in the format that inference engines happen to 
process; (ii) users of KBS or knowledge engineers can edit 
and evolve the domain’s rules knowledge base, with no need 
for knowledge of inference engine languages. 
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The process of generation of proofs steps executed by the 
WebExplain is made up of the following steps: 

1. It receives, from the subtask, the rule fired by inference 
engine (subtask implementation A). This is possible 
because every inference engine possesses a service, 
generally called Listener, that informs the sequence rules 
fired; 

2. It executes a method of its ProofGeneration class that has 
access to the rules ontology to retrieve information on the 
conditions and action of the rule fired, as well as the 
classes of the domain manipulated by the rule; 

3. It executes a method of its ProofGeneration class that 
inserts the steps of proof as objects of the Proof class based 
upon the conditions and actions of the rule. For example, 
let p be a wff (well-formed formula) that represents the set 
of the rule’s conditions and let q be a wff that represents 
the set of the rule’s actions. As the rule was fired, all of the 
rule’s conditions were satisfied by facts r,s,t..., therefore 
the truth-value of p is true. By the rules ontology, the 
truth-value of (p → q) is true. Therefore, WebExplain can 

nts 



 

insert the proof steps q,r,s,t..., and (p → q) as Proof 
objects. Proof step q represents a derived conclusion and is 
generated with information on its antecedents r,s,t..., e (p 
→ q), the ModusPonens inference rule used in its 
deduction and the inference engine used.  

4. It returns to Step 1 for the next rule fired, associating all of 
the proof steps to the current subtask. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Rule Ontology for WebExplain. 

 
In the case where the subtask is implemented by means of 

an algorithm (subtask implementation B), the 
implementation of the algorithm must define the conditions 
and actions for executing each reasoning step embedded in 
subtask and the generation process is started from step 3, 
described above. 

The integration between WebExplain and the generic 
UPML components—PSM and Task—is defined at the time 
of implementing the PSM, therefore the effort is performed 
only once, and is ready to be reused in the development of 
several Explainable KBS. 

4. USING WEBEXPLAIN AS SUPPORT TO 
THE DEVELOPMENT OF EXPLAINABLE 
KBS 

We have two kinds of reuse in our approach: the reuse of the 
WebExplain component in the modeling and implementation 
of different PSM, and the reuse of these PSM in the 
development of different KBS which implies, consequently, 
the extensibility of the WebExplain to several KBS and in 
its consolidation as a means of support to Explainable KBS 
developers.   

In this section, we exemplify our approach by describing 
its use in the development of the abstract-and-match PSM, 
for assessment tasks, and in the development of an 
Explainable KBS—the ExpertCop System [6].  
4.1. Using WebExplain in the Development of a 
PSM 
The abstract-and-match PSM is defined conceptually in 
[16]. Its reasoning process defines a control structure 
executing the following subtasks sequentially:  

1. Abstract that simplifies the case data;  
2. Specify that finds criteria relevant to the case data;  
3. Select that selects one criterion for evaluation;  
4. Evaluate that evaluates the select criterion with respect to 

the case data;  
5. Match that checks whether the criteria that were evaluated 

lead to a decision. The select, evaluate, and match subtasks 
are interactively executed for each criterion until a decision 
can be found or the criteria set is exhausted. 

Basically, the AbstractMatch java class implements the 
PSM reasoning process through a control structure that is 
responsible for sequencing the subtasks. This class extends 
the PSMComponent class which contains generic methods 
to perform the mapping with the other UPML components 
and, among others, a method to execute the calls to 
subtasks—executeSubTask method. In this method, the 
integration with WebExplain was inserted calling a method 
from the ProofGeneration class, which receives the subtask 
that is to be executed. This integration ensures that the proof 
tree to be generated in PML mirrors the reasoning structure 
embedded in the PSM. At the end of the execution of 
subtasks, the AbstractMatch class invokes the publish 
method of the IWHandler class responsible for generating 
PML documents corresponding to the proof tree. 

The abstract-and-match PSM subtasks are implemented as 
subclasses of the Java TaskComponent class and all possess 
a method called execute, which contains the implementation 
of the reasoning part destined to each one. In this method, 
commands must be inserted for integration with 
WebExplain: receive from inference engine each rule fired 
and call a method of the ProofGeneration class to access the 
rules ontology (subtask implementation A) or define the 
conditions and actions for executing each reasoning step 
(subtask implementation B); and insert the proof steps 
corresponding to the execution of the rule as objects of the 
Proof class. The Abstract, Evaluate and Match subtasks 
were implemented by means of an inference engine and the 
Specify and Select subtasks were implemented via 
algorithm. 

The abstract-and-match PSM also define the following 
knowledge roles: case description, criteria to be evaluated, 
abstraction rules, evaluation rules, and decision rules. These 
knowledge roles were implemented as java classes 
containing generic properties and methods to receive, as 
parameters, the corresponding instances from classes from 
the domain’s ontology and the rules ontology.  

The development of a KBS for assessment tasks using the 



 

UPML components in any domain can thus reuse the PSM 
implementation, freeing developers for implementing only 
domain-specific classes and for defining those domain-
specific knowledge roles. 

 
4.2. Using WebExplain for Developing an 
Explainable KBS 
The ExpertCop System [6] is a UPML-based KBS example 
performing an assessment task implemented by the abstract-
and-match PSM. In ExpertCop’s decision-making process, a 
criminal cognitive agent must evaluate data gathered from a 
geo-simulated environment using a set of criteria to decide 
whether or not to commit a crime. This system is used to 
teach police officers about when and where crimes are likely 
to be committed. 

The developers of the ExpertCop system reused the entire 
implementation of the abstract-and-match PSM and its 
integration with WebExplain. They only had to do the 
domain ontology modeling and the domain rules as 
subclasses of knowledge roles defined by the PSM: the case 
description was modeled by the CrimeSituation class, the 
criteria to be evaluated class was modeled as 
CrimeCriterion, and the abstraction rules, evaluation rules, 
and decision rules were modeled in the rules ontology that 
defined rules of three types: abstraction, evaluation, and 
decision. These rules are processed by the JEOPS inference 
engine, and passed on as parameters, at execution time, to 
the Abstract, Evaluate, and Match subtasks. 

Let us take as an example the rule evaluateRiskHigh of 
the evaluation type. This rule possesses the following 
conditions: 

• CrimeSituation.density > 10; 
• CrimeSituation.policeDistance < 501; 
• Risk.selected = true; 
and the following action: 
• Risk.truthValue = high 
In Figure 3, the IW browser presents a justification, in 

KIF, for the fact that valueRisk is high. The node sets were 
generated by WebExplain from the execution of the rule 
evaluateRiskHigh, which was chained by the subtask 

evaluate. The fact “valueRisk high” is encoded in a PML 
node set conclusion and each inference step in the node set 
corresponds to a fact justification. When rendering the fact 
justification, the browser shows that the answer, through an 
application of the modus ponens inference rule, was inferred 
from the following facts (that correspond to the rule 
conditions): 

• (policeDistance ?crimeSituation 300) 
• (density  ?crimeSituation 15) 
• (selected ?risk true) 
and the rule itself:   
• ( <= (valueRisk high) 
          (and (density crimeSituation ?z)  (> ?z 10) 
                 (policeDistance ?crimeSituation ?m) (< ?m 501) 
                 (selected ?risk true))) 
 

Fig. 3. Nodesets generated by the WebExplain from the subtask evaluate communication about the execution of the rule 
evaluateRiskHigh. 

5. RELATED WORK 
Explanations for KBS have appeared as a significant and 
independent topic of study since MYCIN [1]. NEOMYCIN 
[2] contributed to explanation research in KBS by using an 
explicit representation for problem resolution strategies and 
by using meta-rules in explanation planning. By using meta-
rules, NEOMYCIN separated the domain ontology from 
MYCIN’s rules. This separation allowed NEOMYCIN to be 
more usable as an explanation infrastructure; however it was 
specific to MYCIN in terms of problem solving and domain 
representation.  

The use of Ripple Down Rules (RDR) [15] presents a new 
paradigm for KBS in which cases are used to explain an 
answer to a query. RDR provide only cases as representation 
for explanation which is a domain-specific representation. 
Moreover, RDR tools, like browsers, are specific for this 
knowledge representation technique. Another aspect to point 
out is that this approach was only used in classification 
tasks. Therefore, it is not trivial to extend it to other 
knowledge tasks such as design.  

WOZ [17] is a framework for explaining component-
based decision-support systems. The framework is 
composed of functional components that represent the 
reasoning process, the associated cooperative visualization 



 

agents responsible for explanation presentation and user 
interaction, and application domain models such as user 
model, agent model, and explanation strategy. WOZ 
incorporates some of the major trends in software 
engineering including explicit models, multi-agent 
architectures, and visualizations. However, WOZ is not 
easily scalable, since a new explanation strategy must be 
developed for each application. 

Similar to our approach is the Explanation Expert System 
(EES) [18] framework that provides explanations about the 
manners the KBS used the PSM in a certain domain.  As our 
approach does, its Explanation Generator component 
provides clarifications when its explanations are not 
understood. The major difference is that we use a web-based 
infra-structure for explanation which could be useful in the 
development of problem solvers in general (web services, 
agents, etc.). Moreover, this infra-structure benefits of 
portability. It can be shared with other applications and 
opens the possibility to cooperative explanations.    

6. CONCLUSION 
In this paper, we address the issue that KBS need 
explanation components and that we are not aware of any 
that provide a systematic way to generate explanations of 
PSM implementations or that can be easily reused for the 
development of other applications, thus reducing the 
implementation effort of the explainable KBS. So, we 
propose an extension of the UPML framework by providing 
a reusable explanation component—WebExplain. 
WebExplain is integrated to the UPML generic components: 
PSM and Task. Hence, we are leveraging UPML facilities as 
reuse and ontologies. WebExplain provides proofs from the 
reasoning process embedded in the PSM and subtasks, 
which serve as a basis for explanations about the reasoning 
structure and explanations about the domain’s knowledge. 
Another characteristic of WebExplain is the use of PML for 
dumping proofs, therefore enabling proof and explanation 
interoperability between distributed applications. 

We exemplify our approach in the development of a PSM: 
how should the integration between WebExplain and 
generic UPML components be implemented. We identified 
three points of easy integration. This effort was performed 
only once and the PSM, integrated to WebExplain, can be 
reused, freeing Explainable KBS developers from the worry 
of having to implement only domain-specific classes. 

Future works aim at projecting some pragmatic principles 
of linguistic interactions onto the semantic structures of the 
PML proofs in order to select the information to be 
conveyed to users, to simplify proof steps and to reorganize 
proofs, in order to improve the quality of the explanations. 
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