
On the Use of Abstract Workflows to Capture Scientific Process Provenance

Paulo Pinheiro da Silva
Computer Science Department
University of Texas at El Paso

El Paso, Texas 79968

Leonardo Salayandia
Computer Science Department
University of Texas at El Paso

El Paso, Texas 79968

Nicholas Del Rio
Computer Science Department
University of Texas at El Paso

El Paso, Texas 79968

Ann Q. Gates
Computer Science Department
University of Texas at El Paso

El Paso, Texas 79968

Abstract

Capturing provenance about artifacts produced by dis-
tributed scientific processes is a challenging task. For
example, one approach to facilitate the execution of a
scientific process in distributed environments is to break
down the process into components and to create work-
flow specifications to orchestrate the execution of these
components. However, capturing provenance in such
an environment, even with the guidance of orchestration
logic, is difficult because of important details that may
be hidden by the component abstractions. In this paper,
we show how to use abstract workflows to systematically
enhance scientific processes to capture provenance at ap-
propriate levels of detail. Abstract workflows lack the
orchestration logic to execute a scientific process, and
instead, are intended to document scientific processes as
understood by scientists and at the level of detail that is
necessary to capture provenance for scientific use. Fur-
thermore, abstract workflows are coupled with a repre-
sentation of provenance that can encode provenance gen-
erated from distributed components. We show how the
approach described in this paper has been used for cap-
turing provenance for scientific processes in the Earth
science, environmental science, and solar physics do-
mains.

1 Introduction

Most scientists capture provenance about their data and
process executions without using methods specifically
designed to record provenance. For example, scientists
may record provenance in the form of logs, meta data,
annotations, and others. However, it is often hard for
other scientists to reuse provenance recorded in such
forms. For example, scientists may need to delve into
the inner-workings of a software system to understand
how a log is being constructed and to determine whether
the information provided in the log is adequate to sup-

port provenance-related analysis. A common represen-
tation for provenance, i.e., a provenance language, has
been identified as a necessity to facilitate the reuse of
provenance. This language should be used to capture
provenance for the relevant parts of the scientific process,
whether the process is executed within a machine, exe-
cuted in a distributed environment, or even if the process
is not executed in an electronic way, i.e., human activity.
We use the Proof Markup Language [9] as our preferred
domain-independent language for encoding provenance.

Furthermore, to extend scientist adoption of meth-
ods specifically designed to capture provenance, we dis-
cuss the issue of supporting scientists to systematically
enhance their processes to capture provenance whether
these processes are specified as scientific workflows or
not, whether they are centralized or distributed, and
whether they are executed by machines or carried out
manually by humans. The use of abstract workflows [2]
has been developed to facilitate the sharing of process
knowledge (as defined in [3]) among scientists. Abstract
workflows are specifications that are not committed to
be executed by machines; hence, abstract workflows
have the added flexibility of being useful to describe dis-
tributed scientific processes that are hosted across cyber-
environments regardless of the specific technologies em-
ployed. This paper describes how abstract workflows are
used to generate wrapper modules to enhance distributed
scientific processes with functionality for receiving, cap-
turing, and propagating provenance. These modules are
called data provenance annotators. The paper also de-
scribes how abstract workflows support the capture of
provenance for processes that are carried out by humans.

The rest of the paper is organized as follows. Section 2
introduces a scientific process use case for distributed
provenance. Section 3 describes the languages and tools
used for capturing distributed provenance for the scien-
tific process use case. Section 4 describes the provenance
capturing approach. Section 5 reports on other efforts
where the provenance capturing approach has been used.

1

Section 6 describes approaches for capturing provenance
used in other computational platforms. Conclusions are
presented in Section 7.

2 Use Case - Hole’s Code

To illustrate how our techniques can be integrated into
complex workflows, we will refer to a process that cre-
ates a seismic velocity model of the Earth’s crust using
a non-linear tomography inversion procedure [4], a fi-
nite difference calculation [11], and observed velocities
of seismic waves through structures of the Earth’s crust.
The process, referred to as Hole’s Code, is illustrated in
Figure 1. The process starts by obtaining a preliminary
velocity model of the Earth’s crust that is constructed
from field measurement data (Vel1-3D). Next, the ve-
locity model is refined gradually by executing an itera-
tive process that uses seismic waves generated from con-
trolled shot-point explosions (Punch) and correspond-
ing measurements of the arrival times of the waves at
geophone stations (Cover). The last three steps of the
iteration correspond to a smoothing step (Tomo), a filter-
ing step (Duadd), and a step to incorporate the refine-
ments to the velocity model (Addc). Such models are
useful for earthquake analysis and oil exploration.

3 Background

3.1 Ontologies and Abstract Workflows
It is important for scientists to document the scientific
processes that they use to generate scientific artifacts. It
is also important for other scientists to be able to under-
stand the processes that were used to produce scientific
artifacts. Scientific workflows is one approach to docu-
ment scientific processes.

By using technologies from the Semantic Web com-
munity, as well as elemental principles from software
engineering practices, the CI-Miner approach [2] pro-
vides a technique to document scientific workflows that
is amenable to users of non-technical fields of exper-
tise. The approach consists of creating task ontologies
to capture domain knowledge that effectively represents
a controlled vocabulary of a project, as well as additional
knowledge that suggests the use of this vocabulary to-
wards the description of processes for that project. Next,
the scientist uses the knowledge encoded in the ontology
to document scientific processes in the form of abstract
workflows. The ontologies used in this approach are re-
ferred to as Workflow-Driven Ontologies (WDOs) [10],
and the WDO-based workflow specifications are referred
to as Semantic Abstract Workflows (SAWs). Both are
discussed further in the next subsections, as well as the
WDO-It! tool that assists the user through the approach.

Punch

Cover

Addc

Tomo

Duadd

pmlp:Human

pmlp:Dataset

•Travel Time Residuals
•Shot Points
•Gridded Time Field

•Ray Coverage
•Slowness Perturbation
•Perturbation along ray

Smoothed 3D Velocity Model

Filtered 3D Velocity Model

t

t3D Velocity Model

Vel1-3D

pmlp:Database

Field
MeasurementsExperiment

Parameters

Initial 3D Velocity Model

Figure 1: Semantic Abstract Workflow for Hole’s Code

2

3.1.1 Workflow-Driven Ontologies

Guarino [3] suggested the classification of ontologies ac-
cording to their level of dependence to a particular task
or point of view. In this classification, WDOs are task
ontologies; WDOs are encoded in OWL and are used to
document concepts about a domain for the purposes of
capturing process knowledge.

The two main classes of WDOs are Data and Method.
The Data class is representative of the data compo-
nents of the scientific process. These can be things such
datasets, documents, instrument readings, input param-
eters, maps, and graphs. The Method class is represen-
tative of discrete activities involved in the scientific pro-
cess that transform the data components. As described in
[10], the intention of WDOs is to allow scientists to cap-
ture process-related classes by extending the hierarchies
of Data and Method.

3.1.2 Semantic Abstract Workflows (SAW)

From the perspective of an end-user, scientific workflows
can be generalized as graphical structures that contain
nodes representing discrete activities and directed edges
representing data flow between those activities. Activi-
ties connected through directed edges effectively deter-
mine data dependencies between the activities. Travers-
ing the graph from its initial data sources to its final data
sinks simulates the action of carrying out a complex pro-
cess conformed of simpler activities. To deploy such
a representation of a process as an automated or semi-
automated system, additional control flow information
is necessary to determine the rules that guide the graph
traversal.

According to the CI-Miner approach, the main artifact
for scientists to capture scientific processes is a SAW.
Semantic refers to the meaning inherited by using on-
tological classes captured in a WDO. Abstract refers
to the fact that the workflows captured lack the addi-
tional constructs necessary to produce automated sys-
tems that would implement the modeled workflow. In
this sense, SAWs are not committed to be executable
workflow specifications.

Figure 1 shows an example of the graphical notation of
SAWs. Data are represented by directed edges and Meth-
ods are represented by rectangles. Data and Methods
are labeled with the name of their corresponding user-
defined WDO class. Sources and Sinks are introduced
in the graphical notation of SAWs as a bootstrapping
mechanism to indicate the starting and ending points of
a process, and these are represented by ovals. Sources
and Sinks are also labeled with the name of their cor-
responding class defined in the provenance component
of the Proof Markup Language (PML-P) ontology dis-
cussed below.

3.1.3 WDO-It!

In terms of the Semantic Web community, and the OWL
language in particular, WDOs are OWL documents that
capture ontological classes and relations, while SAWs
are OWL documents that capture knowledge bases based
on the knowledge captured in the WDOs. Hence SAWs
do not contain class or property definitions, but instead,
include only instances of the classes and properties de-
fined in WDOs.

WDO-It! (http://trust.utep.edu/wdo) is a Java-based
tool intended to help scientists in the creation of WDOs
and SAWs encoded in OWL. In order to document sci-
entific processes with SAWs, a scientist would start by
creating and subsequently referring to a WDO that doc-
uments the classes related to the project of interest, and
start to create instances of the Data and Method classes
contained in the WDO. As these classes are instantiated,
the instances are represented graphically in the SAW
with the notation previously described.

The instances that effectively document a scientific
process in a SAW can be customized by assigning la-
bels that can serve as differentiators between different
instances of the same class. Additionally, formats can
be assigned to instances of Data classes to ground their
specific representation. For example, the instance 3D
Velocity Model in Figure 1 could be assigned the
format mime:Text.

Lastly, as the instances are introduced to the SAW and
their corresponding graphical representations are cre-
ated, additional information about their graphical layout
position is attached to the instances.

3.2 Proof Markup Language
The goal of capturing provenance about data is to sup-
port the explanation of how data is created or derived,
e.g., which sources were used, who encoded the data,
and more. The Proof Markup Language (PML) ontol-
ogy defines primitive concepts and relations for repre-
senting provenance about data. PML is divided into three
parts [7]:

∙ The provenance ontology (PML-P) defines concepts
to represent identifiable things from the real world
that are useful to determine data lineage. For ex-
ample, sources such as organization, person, agent,
service, and others are included in PML-P;

∙ The justification ontology (PML-J) defines concepts
and relations to represent dependencies between
identifiable things;

∙ The trust relation ontology (PML-T) defines con-
cepts and relations to represent belief assertions and

3

to use those assertions in explanations about data.
The use of PML-T is beyond the scope of this paper
and consequently is not included in the discussion
below.

The foundational concept in PML-P is
pmlp:IdentifiedThing, which refers to an
entity in the real world. These entities have attributes
that are useful for provenance, such as name, descrip-
tion, create date-time, authors, and owner. PML includes
two key subclasses of pmlp:IdentifiedThing
motivated by provenance representational concerns:
pmlp:Information and pmlp:Source. The
concept pmlp:Information supports references to
information at various levels of granularity and structure.
The concept pmlp:Source refers to an information
container, and it is often used to refer to all the informa-
tion from the container. A pmlp:Source could be a
document, an agent, a web page, among others. PML-P
provides a simple but extensible taxonomy of sources.

PML-J provides concepts and relations used to en-
code the information manipulation steps used to de-
rive a conclusion. A justification requires concepts
for representing conclusions, conclusion antecedents,
and the information manipulation steps used to trans-
form/derive conclusions from antecedents. Although
these terms stem from the theorem proving commu-
nity they can be mapped to more familiar work-
flow terms; for example, conclusions refer to in-
termediate data and antecedents refer to the inputs
of some processing step. The justification vocabu-
lary has two main concepts: pmlj:NodeSet and
pmlj:InferenceStep. A pmlj:NodeSet in-
cludes structure for representing a conclusion and a set
of alternative pmlj:InferenceSteps each of which
can provide an alternative justification for a conclu-
sion. Lastly, every pmlj:NodeSet has a unique web-
addressable identifier, i.e., has a URI. Web-addressable
pmlj:NodeSets make it possible to construct justifi-
cation trees in a distributed environment.

Figure 2 shows an example of provenance encoded
in PML. The example is in reference to the part of
the process shown in Figure 1 where a 3D Velocity
Model is obtained from the execution of the Tomo
method, which takes as input Ray Coverage, Shot
Points, and a Gridded Time Field. Line 2 of
Figure 2 starts the declaration of the pmlj:NodeSet,
which is divided into two main parts: a conclusion
(lines 3-12) and the inference step that led to the con-
clusion (lines 13-35). The conclusion is described
as pmlp:Information (lines 4-11), an identifiable
thing that has a specific URL and format. The infer-
ence step is described in the terms of the inference engine
used to carry out the inference step (lines 15-17), the in-

file:///C|/Documents%20and%20Settings/leonardo/Desktop/nodeset-example.txt

 1 <rdf:RDF>
 2 <pmlj:NodeSet rdf:about="http://.../Tomo.owl#answer">
 3 <pmlj:hasConclusion>
 4 <pmlp:Information>
 5 <pmlp:hasURL>
 6 http://.../smoothed-3D-velocity-model.dat
 7 </pmlp:hasURL>
 8 <pmlp:hasFormat>
 9 http://.../3D-model.owl#model
10 </pmlp:hasFormat>
11 </pmlp:Information>
12 </pmlj:hasConclusion>
13 <pmlj:isConsequentOf>
14 <pmlj:InferenceStep>
15 <pmlj:hasInferenceEngine>
16 http://...#holes
17 </pmlj:hasInferenceEngine>
18 <pmlj:hasInferenceRule>
19 http://...#tomo
20 </pmlj:hasInferenceRule>
21 <pmlj:hasAntecedentList>
22 <pmlj:NodeSetList>
23 <ds:first>
24 http://.../slowness-perturb.owl#answer
25 </ds:first>
26 <ds:next>
27 http://.../ray-coverage.owl#answer
28 </ds:next>
29 <ds:last>
30 http://.../ray-perturb.owl#answer
31 </ds:last>
32 </pmlj:NodeSetList>
33 </pmlj:hasAntecedentList>
34 </pmlj:InferenceStep>
35 </pmlj:isConsequentOf>
36 </pmlj:NodeSet>
37 </rdf:RDF>

file:///C|/Documents%20and%20Settings/leonardo/Desktop/nodeset-example.txt [2/16/2010 7:52:57 PM]

Figure 2: PML NodeSet representing an execution of the
holewdo:Tomo processing step

ference rule applied (lines 18-20), and the antecedents
used to for the inference rule (lines 21-33) where each
antecedent is encoded using the URI of its correspond-
ing pmlj:NodeSet. Relating to workflow terms, the
inference engine can be mapped to a workflow execut-
ing environment, the inference rule can be mapped to
a specific activity executed within a workflow, and the
antecedents can be mapped to the inputs taken by that
activity.

4 Capturing Provenance

This section describes the systematic approach of en-
hancing a scientific process to capture provenance. Fig-
ure 3 shows an overall view of the approach and the sub-
sequent sections describe the details.

4

1. Encode vocabulary for
scientific process

Data Method

2. Model scientific process as an
abstract workflow

Source U Method Y Sink V
Data X Data Z

3. Capture Provenance about Data that is generated using the scientific
process from above; there are two ways:

(a) Create Data Annotators (wrapper
modules) and use them to enhance a
scientific system to capture provenance

(b) Use the scientific process as a
template to manually link artifacts
to capture provenance

Method Y
Data X Data Z

Data Annotator for Method Y

Provenance (encoded in PML):
-Data Z was produced using Method Y
-Method Y has properties: Ya, Yb, Yc
-Method Y took as input Data X
-Data X comes from Source U
-Source U has properties: Ua, Ub, Uc

x

Method Y
Data X Data Z

z

Joe Analyst
(URI)

Figure 3: The process of capturing provenance with Ab-
stract Workflows

4.1 Modeling the Scientific Process
As illustrated in Figure 3, documenting the scientific pro-
cess is intended to be a scientist-driven process started
by the identification of vocabulary terms. The vocab-
ulary is encoded as an OWL ontology referred to as a
Workflow-Driven Ontology (WDO) and as described in
Section 3.1.1. The Data and Method terms of the scien-
tific process are elicited by the scientist either by refer-
encing terminology used in related systems, identifying
terms through communal consensus, or referring to other
well established vocabularies.

Based on the vocabulary captured in the WDO, the sci-
entist continues to document a scientific process as a Se-
mantic Abstract Worklfow (SAW) as described in Sec-
tion 3.1.2 and illustrated in Figure 3.

4.2 Capturing provenance for automated
processes

Once a SAW has been authored to model a process from
the perspective of the scientist, it can be used to drive
the generation of “data annotators”. One data annota-
tor module is created and tailored for each Method in-
stance (or workflow activity) included in the SAW. Sub-
sequently, the set of data annotator modules created from
a SAW are used to instrument the system or executable
workflow that carries out the scientific process to capture
provenance. The instrumentation of automated processes
is discussed in the next subsection.

Data annotators are modules designed to capture

provenance associated with automated workflow activi-
ties. Data annotators are built for the sole purpose of log-
ging provenance rather than transforming data; therefore,
data annotators are 1) non-intrusive from the perspec-
tive of the scientific processing, and 2) use a provenance
language as the exclusive means of communication (i.e.,
input and outputs of data annotators are provenance ele-
ments). When using data annotators, provenance is trans-
formed by each annotator by always enhancing the input
provenance trace with more information. In our current
efforts, we have used PML to encode provenance; there-
fore, the inputs and outputs of all data annotators are al-
ways pmlj:NodeSets as discussed in Section ??.

The logging mechanism of data annotators is divided
in three phases:

∙ Data Capture: Provenance includes intermediate
workflow results (i.e., workflow activity outputs);
therefore, data annotators are responsible for cap-
turing the outputs of the workflow activity it is tai-
lored for.

∙ Composition: Once the output data has been cap-
tured or intercepted for a workflow activity, it is
composed with the provenance related to the activ-
ity’s inputs.

∙ Forward: Once provenance has been constructed
from the composition of provenance from the inputs
of a workflow activity plus the provenance related
to the workflow activity itself, it is available to be
used by other data annotators that may be executed
in the future. Because each annotator propagates its
antecedents (i.e., its inputs) to the next annotator,
there is a full justification available at any point in
the execution of a workflow.

4.2.1 In-process vs. Post-process annotation

Once the data annotators are generated from the SAW,
the system or executable workflow that carries out the
scientific process needs to be instrumented to invoke the
data annotators. This task requires the assistance of a
technically-oriented user that is familiar with the system
to be enhanced. This is because certain properties of a
system will dictate when provenance should be logged.
For example, when intermediate artifacts are not per-
sisted during execution of the workflow, an in-process
approach must be used to capture these intermediate ar-
tifacts before they are expunged from the process. This
implies, however, that the workflow has to be modified to
invoke data annotators at precise moments in execution,
and thus, the coordinating agent of the data annotators is
also the coordinating agent of the executable workflow.
Deciding where to add the data annotator calls on a sys-
tem requires knowledge about the inner-workings of the

5

system, such as what parts correspond to process coordi-
nation (i.e., process control) and which parts correspond
to the execution of workflow activities.

If a workflow does not delete intermediate results or
if users are unable to modify a workflow, then the non-
invasive post-process annotation can be used. In this
case, knowing about workflow how/when/where work-
flow activities are invoked is less important than know-
ing specific properties of data output from the activities.
This is because, a post-processing annotators search for
the existence of certain types of data with certain prop-
erties, which signifies that a particular workflow activity
was executed. For example, if an annotator was config-
ured to capture provenance associated with the Hole’s ac-
tivity “generate velocity model” it would search the file
system for the existence of a “3D model”, which would
provide evidence that the “generate velocity model” was
executed.

4.2.2 Centralized vs. Distributed Provenance

The provenance captured by data annotators is encoded
in PML, which can be constructed from distributed
NodeSets; thus, data annotators can too be distributed
along with any remote services that are invoked by a
workflow. This is possible because the inputs to data an-
notators, which are PML NodeSets associated with ex-
ecutions of workflow activities, are referenced by URIs.
This is convenient because often times complex scien-
tific processes are modularized and controlled by a mas-
ter script that in turn makes calls to services which may
be located remotely. In these cases, the agent coordi-
nating the data annotators does not need to know about
provenance as a whole, but only encounters the URIs of
intermediate provenance elements.

Computational platforms, including scientific work-
flow environments such as Kepler [6] and Taverna [5],
have been extended to record provenance: meta data
about services invoked by their workflow engines and
about input and output information consumed and pro-
duced by these services. Specifications that are executed
by workflow engines, however, tend to be unaware of
services indirectly invoked during execution, i.e., other
services called within services that are invoked by a
workflow engine. In this context, we see that results of
workflow executions would benefit of a distributed ap-
proach for capturing provenance consisting of aggregat-
ing provenance-related information from the individual
services executed on behalf of the process to build prove-
nance for the entire process.

4.3 Capturing provenance for manual pro-
cesses

For the case of scientific processes that are carried out
by humans, the approach to capture provenance is done
manually by linking artifacts with respect to the SAW.
The SAW that is used to model the scientific process
serves as a template that is gradually filled with artifacts
that result from human activity. For example, a manual
scientific process may include a “Data analysis” activity
that is carried out by a domain expert. The artifact result-
ing from the analysis activity, e.g., a document reporting
the outcome of the analysis, is linked to the output of the
corresponding activity in the SAW.

Once the scientific process is carried out to comple-
tion, at least one branch of the SAW template will be
filled from start to finish. In other words, the SAW
may contain several starting points that lead to the fi-
nal outcome, but only one branch is needed to document
the provenance of the final outcome. This is because
while the goal of Semantic Abstract Workflows (SAWs)
is to document scientific processes that are used to cre-
ate scientific artifacts, the goal of PML is to document
provenance about the creation of one scientific artifact.
Consider Hole’s Code use case; while the SAW in Fig-
ure 1 shows that the process to produce holewdo:3D
Velocity Model is a loop consisting of five steps,
provenance encoded in PML about the creation of a
specific holewdo:3D Velocity Model would in-
dicate the specific methods, as well as the number of iter-
ations that were actually executed to create the end result.

5 Observations from Ongoing Efforts

In addition to the use case presented above, our ap-
proach to document and capture provenance about sci-
entific processes is currently being used in several
projects from the CyberShARE Center of Excellence
(www.cybershare.utep.edu), and the National Center for
Atmospheric Research (NCAR) (www.ncar.ucar.edu).
CyberShARE alone encompasses the geoscience and en-
vironmental science domains providing a diverse set of
use cases from which to evaluate our provenance log-
ging techniques. Specifically, one of the environmental
science projects is based on the execution of a work-
flow that has some activities which require human in-
tervention. Reflectance data is captured in the Arctic by
sensors attached to a cart that travels down a 300 meter
tram. Upon completion of a run, the recorded data sets
are transferred to a computer, by a human, from which
processing of the data can resume. Additionally, there
are steps in the workflow that require the use of software
that requires human interaction. Based on the character-
istics of the workflow, a post-processing data annotation

6

approach was used to piece together the justifications for
data dumped from the workflow activities (i.e., construct-
ing the PML-J links), which proved to be a success in
terms of capturing all the steps the scientists were inter-
ested in. However, at the time of this work, there does not
exist mechanisms for generating the associated identifi-
able things of the provenance (i.e., the PML-P artifacts)
and it is required that the scientist manually encode this
information.

Given that PML employs concepts from the context of
theorem proving, environmental scientists found it diffi-
cult to complement the generated PML-J with the cor-
rect instances of PML-P. This was one of the main mo-
tivations for harvesting PML-P instances at the level of
SAWs. By including PML-P information in the SAW,
the the data annotators that are generated from the SAW
are tailored to adorn the output NodeSet with the PML-P
instances identified in the SAW whether or not the prove-
nance is captured as in- or post-process.

With respect to geoscience, the process of Hole’s Code
discussed here, as well as the process of using gravity,
magnetic, and receiver function geophysical data to con-
struct 2 1/2 Dimension Crustal Structure models of the
Earth are other ongoing efforts. SAWs have been au-
thored that capture these processes at a level that com-
municates well to experts in a wide area of domains and
provenance has been generated for some datasets. Nu-
merous iterations of specifying the processes with SAWs
included colleagues from various disciplines such as
seismology, computer science, and computational math
to identify the adequate concept names that would pro-
mote understanding of the process being documented
across a variety of disciplines.

With regards to NCAR, our techniques were also used
to capture provenance associated with their Quicklook
process [8]. The Quicklook workflow is a fully auto-
mated workflow that runs from start to completion with-
out any human interactions. This workflow is actually
a sub-workflow in a much larger and complicated work-
flow known as the CHIP pipeline that processes radio
images of the sun. The smaller Quicklook process does
not produce scientific quality images but is used to get a
“quick look” of solar images that are not at a resolution
high enough to be considered scientific. Many of the in-
termediate results in the Quicklook process are persisted
after execution. Additionally, at the time of this work, we
were unable to get a hold of the working script that coor-
dinates this process; thus, we opted for a post-processing
annotation of the data that worked well for both computer
scientists and domain scientists. However, the larger pro-
cess encompassing Quicklook has many workflow steps
in which the intermediate results are expunged leaving
this larger CHIP process as a perfect candidate to employ
an in-processing capturing of provenance. As a whole,

the capturing of CHIP provenance requires a hybrid ap-
proach in which some of the provenance is captured in-
process while the portions of the process associated with
Quicklook are captured post-runtime; a scenario that we
had not considered before this work.

6 Related Work

Kepler builds on workflow abstractions with a “prove-
nance recorder” [1], a mechanism for collecting prove-
nance within a workflow. Adding a provenance recorder
to a workflow allows for the collection of workflow
building steps and workflow evolution, a method of cap-
turing important instances or versions of a workflow as it
is being modified. The Kepler provenance framework
is coupled with the Kepler workflow environment re-
sulting in a autonomous system that can both execute
workflows and record associated provenance by attach-
ing provenance listeners to the underlying engine. The
logging capabilities are not distributed in the sense that
if a workflow method makes a call to a subworkflow, Ke-
pler would not be aware of this and would not record it in
its provenance trace. Additionally, the provenance cap-
tured by Kepler is not distributed in the sense that the
provenance is managed centrally by the Kepler engine.

MyGrid, from the e-science initiative, tracks data
and process provenance of workflow executions [12].
The type of provenance recorded by MyGrid for cyber-
infrastructure applications is analogous to the kind of in-
formation that a scientist records in a notebook describ-
ing where, how and why experimental results were gen-
erated. From these record- ings, scientists are able to op-
erate in three basic modes: (i) debug, (ii) check validity,
and (iii) update mode, which refer to situations when, a
result is of low quality and the source of error must be
identied, when a result is novel and must be veried for
correctness, or when a workow has been updated and its
previous versions are requested.

One of the main features that separates our provenance
solution from others is the ability to record truly dis-
tributed provenance. This is possible because our data
annotators are loosely coupled with the workflow engine.
The workflow engine need only make calls to the data
annotators and pass them the URI string output from the
previously called annotator without any concern about
what or how the data annotator is doing.

7 Conclusion

This paper describes how abstract workflows are used to
guide the generation of code capable of capturing scien-
tific workflow provenance encoded in PML. The prove-
nance capturing approach demonstrates three interest-

7

ing properties: (i) it relies on the flexibility of abstract
workflows for comprehensively describing scientific pro-
cesses that may not be possible to be described with the
use of concrete (or executable) workflows; (ii) it relies
on existing code, e.g., scripts and workflow specifica-
tions, to identify how process steps are connected in-
stead of imposing the encoding of control flow in ab-
stract workflows; and (iii) the approach is flexible to ac-
commodate the complexities a multitude of scenarios for
executing scientific processes including centralized and
distributed environments, manual, automated, and hybrid
modes of execution. As a proof of concept, actual scien-
tific process provenance in multiple domains were cap-
tured and encoded in PML using the provenance captur-
ing approach.

Finally, we recognize that the approach may have lim-
itations with respect to scalability. For example, manu-
ally instrumenting workflows to capture provenance may
be a daunting task in environments that adapt dynami-
cally to environmental changes. Furthermore, the man-
ual process of instrumenting systems may be error-prone.
Understanding the properties of scientific processes and
their impact on our provenance capture approach are
open issues to be explored.

8 Acknowledgments

This work was supported in part by NSF grants HRD-
0734825 and EAR-0225670. Also, we would like to ac-
knowledge the feedback received from anonymous re-
viewers.

9 Availability

Additional information about the WDO-It! tool used to
create Workflow-Driven Ontologies and Semantic Ab-
stract Workflows and to create data annotators can be
found at

http://trust.utep.edu/wdo

Also, the Probe-It! tool is available for visualizing
provenance encoded in PML and can be found at

http://trust.utep.edu/probeit

References
[1] ALTINTAS, I., BARNEY, O., AND JAEGER-FRANK, E. Prove-

nance collection support in the Kepler scientific workflow system.
In Provenance and Annotation of Data (2006), pp. 118 – 132.

[2] GATES, A. Q., PINHEIRO DA SILVA, P., SALAYANDIA, L.,
OCHOA, O., GANDARA, A., AND RIO, N. D. Use of abstraction
to support geoscientistsúnderstanding and production of scientific
artifacts. In Geoinformatics: Cyberinfrastructure for the Solid
Earth Sciences, G. Keller and C. Baru, Eds. Cambridge Univer-
sity Press, To appear.

[3] GUARINO, N. Semantic Matching: Formal Ontological Distinc-
tions for Information Organization, Extraction, and Integration.
In Proceedings of SCIE (1997), pp. 139–170.

[4] HOLE, J. Nonlinear High-Resolution Three-Dimensional Seis-
mic Travel Time Tomography. Journal of Geophysical Research
97(B5) (1992).

[5] HULL, D., WOLSTENCROFT, K., STEVENS, R., GOBLE, C.,
POCOCK, M. R., LI, P., AND OINN, T. Taverna: a Tool
for Building and Running Workflows of Services. Nucleic
Acids Research 34, Web Server issue (2006), W729–W732.
doi:10.1093/nar/gkl320.

[6] LUDAS̈CHER, B., AND ET AL. Scientific Workflow Management
and the Kepler System. Concurrency and Computation: Practice
& Experience (2005). Special Issue on Scientific Workflows.

[7] MCGUINNESS, D., DING, L., PINHEIRO DA SILVA, P., AND
CHANG, C. PML2: A Modular Explanation Interlingua. In
Proceedings of the AAAI 2007 Workshop on Explanation-aware
Computing (Vancouver, British Columbia, Canada, July 22-23
2007).

[8] MCGUINNESS, D. L., FOX, P., PINHEIRO DA SILVA, P., ZED-
NIK, S., RIO, N. D., DING, L., WEST, P., AND CHANG, C.
Annotating and embedding provenance in science data reposito-
ries to enable next generation science applications. In American
Geophysical Union, Fall Meeting (AGU2008), Eos Trans. AGU,
89(53), Fall Meet. Suppl., Abstract IN11C-1052 (2008).

[9] PINHEIRO DA SILVA, P., MCGUINNESS, D. L., AND FIKES, R.
A Proof Markup Language for Semantic Web Services. Informa-
tion Systems 31, 4-5 (2006), 381–395.

[10] SALAYANDIA, L., PINHEIRO DA SILVA, P., GATES, A. Q., AND
SALCEDO, F. Workflow-Driven Ontologies: An Earth Sciences
Case Study. In Proceedings of the 2nd IEEE International Con-
ference on e-Science and Grid Computing (Amsterdam, Nether-
lands, December 2006).

[11] VIDALE, J. Finite-Difference Calculation of Travel Times in
Three Dimensions. Geophysics 55(5) (1990).

[12] ZHAO, J., WROE, C., GOBLE, C., ANDQ D. QUAN, R. S., AND
GREENWEED, M. Using Semantic Web Technologies for Repre-
senting E-science Provenance. In Proceedings of the 3rd Interna-
tional Semantic Web Conference (November 2004), pp. 92–106.

8

