
User Interface Modelling with UML

Paulo Pinheiro da Silva and Norman W. Paton

Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

{pinheirp,norm}@cs.man.ac.uk

Abstract. The Unified Modeling Language (UML) is a natural candi-
date for user interface (UI) modelling since it is the standard notation
for object oriented modelling of applications. However, it is by no means
clear how to model UIs using UML. This paper presents a user inter-
face modelling case study using UML. This case study identifies some
aspects of UIs that cannot be modelled using UML notation, and a set
of UML constructors that may be used to model UIs. The modelling
problems indicate some weaknesses of UML for modelling UIs, while
the constructors exploited indicate some strengths. The identification
of such strengths and weaknesses can be used in the formulation of a
strategy for extending UML to provide greater support for user interface
design.

1 Introduction

UML [10, 2] is the standard language for object-oriented modelling of software applications. The user
interface, as a significant part of most applications [17], should also be modelled using UML. In fact,
UML is a natural candidate notation for UI modelling. However, it is by no means always clear how
to model user interfaces using UML. It is not easy to identify how user interface elements, such as user
tasks and presentations, are supported in UML application models. There are few reports on projects
specifically applying UML for modelling the UI. Moreover, many modelling problems that appear
during the design of a UI, such as in the case study described in this chapter, are not completely
addressed by UML-based design methods or by the UML specification.

Many proposals have been made for models that support the design of UI elements, using several
different notations. For instance, there is research concerning the design of user tasks, as in Kirwan
and Ainsworth [14] and in Johnson [13]. Moreover, there are several proposals for designing UIs using
declarative models, as described in Griffiths et al. [9] and Szekely [19]. Therefore, it would be best not
to have to invent new modelling constructs for the UI if existing ones can be used effectively. Further,
it would be good to be able to use the same constructs for the UI as for the rest of the application.
Indeed, a single notation could be useful for consolidating the complete design of an object-oriented
user interface. There is some research in this area, e.g. Kovacevic [15], but the identification of which
UI aspects can and cannot be described using UML is still not clear.

The aim of this paper is to present a summarised description of a comprehensive UI modelling case
study using UML. This case study has the purpose of identifying: (1) common UI modelling problems
when using UML; and (2) a set of UML constructors and diagrams that may be used by application
developers to design UIs. From the modelling problems we can identify some aspects of UIs that are
not covered by the UML. From the set of constructors we can identify the aspects of UIs that are
covered by the UML. Therefore, the case study produces an insight into the ease with which the UML
can be used to model UIs. Moreover, it provides elements that may be used to develop a strategy for
extending UML in order to provide better support for user interface design.

The case study intentionally does not describe any method that was used during the UI design.
Indeed, many methods were considered in a way to find out alternative modelling approaches, with a
view to overcoming difficulties identified. The idea here is to solve the identified UI modelling problems
using only UML.

The case study considers only form-based user interfaces. In fact, very important categories of
application user interfaces such as database system UIs and web application UIs are mainly form-
based. Restricting the scope to form-based user interfaces means that user interfaces for applications



Figure 1: The use case diagram.

such as games, word processors and simulators are not in the scope of this study. Despite this, the UI
models introduced in the case study can be used as a UI model baseline for the development of more
comprehensive UI models based on UML. Further, the case study considers that modelling the use of
visual components (widgets) is more important than the modelling of the widgets themselves for most
UI designers. Thus, this case study discusses how widgets may be used by the application, and not
how widgets can be modelled.

2 Case Study: The Library System

A library case study is used to identify user interface modelling problems [9]. The Library System in
the case study could be considered too simple to catch real problems faced during the modelling of
user interfaces. Indeed, the Library System is simple compared with real systems. However, it has
proved sufficiently complex to allow a range of problems to be identified in the area of user interface
modelling.

A use case diagram in Figure 1 shows the actors of the Library System and their use cases. Actors
are Librarians and Borrowers. The actor LibrarySystemUser is a generalisation of Librarian and
Borrower. Librarians use the Library System to manage the book catalogue and the loan records.
Librarians only need to inform to the Library System when books are checked into and checked out
of the system to be able to manage loan records. Thus, the use cases BorrowBook and ReturnBook,
associated with Librarian, are created. LibrarySystemUsers can connect to the system, list the books
borrowed by a library user and search for books by author, title, year or a combination of these. Thus,
the use cases associated with LibrarySystemUsers are ConnectToSystem, ListBooksBorrowedByUser
and SearchBook. ConnectToSystem is considered as a use case since a LibrarySystemUser can login
to the system just to check his/her password. Borrowers can browse the book catalogue without
specifying any condition. Thus, the use case BrowseBooks is associated with Borrowers. Search and
browse operations can be repeated over the result of the last search or browse operation.

The Library System must guarantee that only registered users can login to the system. Further,
the system must guarantee that borrowers can only perform services associated with borrowers, and
that librarians can only perform services associated with librarians.

Books can be selected while users are searching or browsing the book catalogue. Once a book is



selected, users can check its availability. The use case CheckBookStatus is modelled as an extension of
SearchBook and BrowseBooks. Indeed, a book must be selected by one of these operations before the
user can check its status.

Some use cases have similar features in their behaviour. For instance, BrowseBooks and Search-
Book are both use cases where books can be specified. Thus, a new use case called SpecifyBook has
been created to model this shared behaviour. Unidirectional associations are created to model the
�extends� relationship between SpecifyBook and BrowseBooks, and between SpecifyBook and Search-
Book. Similarly, SpecifyDomain is also a common behaviour of SearchBook and BrowseBook.

From the use case diagram and the system specification not entirely described in this paper is
obtained the design of the domain model represented by the class diagram shown in Figure 2. This
class diagram is composed of the following �entity� classes: Person, Librarian, Borrower, Book, Loan
and StockItem. The three first �entity� classes correspond to the LibrarySystemUser, Librarian and
Borrower actors, respectively.

Figure 2: The domain model.

The existence of an instance of
Book means that the book has an
entry in the library catalogue. To
manage its stock, the Library Sys-
tem has a StockItem class that rep-
resents copy versions of the books
the library has. However, it is pos-
sible that some books in the li-
brary catalogue are not in stock,
e.g. when newly ordered books
have not yet been delivered, or
when books are damaged. Indeed,
books are inserted in the library
catalogue when they are ordered.
Thus, the use case ManageBook
associated with Librarian is cre-
ated.

An instance of Loan is cre-
ated by the process modelled by
the BorrowBook use case and de-
stroyed in the process modelled by
the ReturnBook use case. A Loan
object indicates essentially the day
a book should be returned.

The �entity� stereotype, �control� stereotype and �boundary� stereotype are used throughout
this paper. They were introduced by Ivar Jabcobson in his Object-Oriented Software Engineering [12]
and incorporated by UML. The �entity� stereotype identifies classes and class instances that model
things or objects that exist in their own right. The �control� stereotype identifies classes and class
instances that perform system behaviour. The �boundary� stereotype identifies classes and class
instances that handle the interaction between system users and systems.

The case study description provides the context for the introduction of the UI design.

3 Task Modelling

The BrowseBooks use case in Figure 1 shows that a borrower can browse books. However, borrowers
must be logged in to perform any other function. Using UML terminology this means that the actor
Borrower can only use the BrowseBooks use case if he/she previously used the ConnectToSystem
use case. In fact, the situation is slightly more complex than that. The fact that a borrower used
ConnectToSystem before does not mean that s/he is logged into the system. This could happen, for
example, because the borrower tried to login but failed. The same use case diagram shows that the
CheckBookStatus use case extends the SearchBook and BrowseBooks use cases, but it doesn’t explain
how this extension happens.

The problem described above is that use case diagrams were designed for requirements analysis,
but they do not provide control flow information related to tasks. The activity diagram in Figure 3(a)
shows how a borrower can interact with the user interface of the Library System. There we notice
that activities are not the same thing as use cases, since the activity Log in means use of the Connect-



ToSystem use case where the system user successfully logged into the system. The activity diagram
also shows that after logging into the system a user needs to select one of the following options: search
for a book, browse books or quit the interaction with the application. Furthermore, the user can only
check the status of a book if the book was selected by the activity Select book.

Select option

View results

Perform search

book details search domain search precision
Specify Specify Specify

Select search option

Log in

Select book

Check book status

b : Book

[selected]

Select function

Search book Browse book

[search] [quit]

[browse]

[select][select]

SEARCH BOOK

(a) (b)

Figure 3: A partial view of the task model.

Applying activity diagrams to control user interface navigation resembles traditional Hierarchical
Task Analysis (HTA) [13, 14, 4] widely used to describe user task models. Activities, use cases and
tasks, however, are not exactly the same thing although they have similar characteristics. Use cases,
for example, can be considered high level tasks, and some activities are also similar to tasks. However,
the relationship between use cases and activities in UML is not particularly clear. In fact, use cases
do not provide some features often associated with user requirements, like goals, pre-conditions and
post-conditions, that may help the design of activity diagrams.

A single activity diagram could model the whole task flow control, but activities can also be
decomposed. In fact, activities are not atomic, which means that they can be interrupted as well as
taking some time to execute [2]. Using this decomposing facility, the activity Search book of Figure 3(a)
can be explained more precisely by an additional activity diagram as shown in Figure 3(b).

Many tasks require information from the domain model as well as information provided by the
users [8]. For instance, in our general activity diagram of Figure 3(a), a selected book should be
passed from activity Select book to activity Check book status. This data flow within activity diagrams
can be modelled using object flows. There, in Figure 3(a), the activity Select book identified the object
b of class Book that was passed to activity Check book status. These data items can also be acquired
from interaction diagrams associated with the use case. However, the object flow technique provided
by activity diagrams avoids the necessity of checking interaction diagrams to discover how tasks access
information.

4 Abstract Presentation Modelling

The need to model UI presentation arises naturally while modelling the application. Even for very
simple scenarios, the modelling of part of the UI presentation is essential. At this stage we do not
need a detailed model of the UI presentation, but only to know what kind of components compose the
UI, how many components there are, and how they may be grouped. We also need to know which
operations these UI elements should have. Therefore, we need an abstract presentation model.

The modelling of a user successfully logging into the Library System can be used to exemplify
the use of an abstract presentation model. Figure 4 shows the sequence diagram for this scenario of
the ConnectToSystem use case. According to the use case diagram in Figure 1, ConnectToSystem is
associated with the �actor� LibrarySystemUser. Hence, a LibrarySystemUser object initiates this
interaction, sending a message to an instance of Library System, which acts as the whole Library
System.



Figure 4: A sequence diagram for the ConnectToSystem use case.

PASSWORD

LOGIN

LIBRARY SYSTEM

OK CANCEL

Figure 5: The display of the ConnectionUI.

Practically speaking, the request connection
message can be, for example, a double click on
the Library System’s icon in a Windows envi-
ronment. The system immediately creates a
�boundary� object of the class ConnectionUI,
that executes an operation called showForm().
The creation of an object is modelled by one
object sending a message �create� to the new
object. Once created, the ConnectionUI object
presents to the user a connection user interface
requesting a login name and a password. This
user interface can be something like the form
shown in Figure 5. Figure 5 is not a UML di-
agram since UML does not specify any notation for designing UI presentations. In fact, we are not
claiming that UML should have a UI mock up notation that can lead to early commitment in terms of
UI layout and component selection. However, we argue that UML needs a notation that can describe
better the structure of abstract user interfaces than class and object diagrams. In fact, such notation
could be used early in the UI design even to support the task design using activity diagrams.

The explanation of the ConnectToSystem sequence diagram requires some auxiliary definitions,
which are provided below.

4.1 Abstract Presentation Structure

The abstract presentation model, shown in Figure 6, has a top-level container, which is the �apm�
AbstractForm, that can have many components, �apm� AbstractComponent, and other contain-
ers, �apm� AbstractContainer. In fact, containers provide a grouping mechanism to the structural
elements of the UI presentation. A generic abstract component is represented by the �apm� Ab-
stractComponent. In Figure 6, AbstractComponent is specialised into three categories: StaticDisplay,
ActionInvoker and InteractionControl. The �apm� stereotype identifies the abstract presentation
model classes.

• The StaticDisplay category is related to those components that just provide some visual infor-
mation, such as labels.



• The ActionInvoker category is related to those components that can receive system events that
are propagated as system operations, such as buttons.

• The InteractionControl category is related to those components that can receive system events
that normally model user options concerning navigation through the UI, such as menus.

Figure 6: The abstract presentation model.

Bodart and Vanderdonckt [1] provide a more precise discussion of the categorisation of abstract
components.

The class diagram shown in Figure 6 is the framework used to describe a conceptual user interface.
An object diagram of this class diagram provides the conceptual description of the user interface.
The ConnectionUI is conceptually described by the model shown in Figure 7. The links labelled
with compose are those between AbstractComponents and AbstractContainers. The links between two
instances of AbstractContainers are labelled with integrate.

Figure 7: The abstract model of the ConnectionUI.

4.2 Abstract Presentation Behaviour

A set of four operations are defined for the AbstractForm class: showForm(), getData(), sendConfir-
mation() and sendCancellation(). At this stage of the design process, these four operations are enough
to provide a basic understanding of a possible set of operations that should be implemented in some
way by �boundary� objects.

• showForm() is normally used as a self-delegation message that draws the form on the output
device. It is automatically performed when �boundary� objects are created.

• getData() collects information provided by the user after an interaction, doing any required
transformation on the information provided into suitable parameters for system operations.

• sendConfirmation() and sendCancellation() messages model low-level system operations on the
interaction of a system user with �boundary� objects. They are generated due to system
events raised by aggregated components of the �boundary� objects. The sendConfirmation()



operation informs �boundary� objects that the system’s user is submitting information to the
system, while sendCancellation() indicates that the system user wants to abort the interaction
with the form without submitting any information.

4.3 Using the Abstract Presentation Model

Returning to the ConnectToSystem sequence diagram in Figure 4, the Library System creates the
�boundary� ConnectionUI object of class AbstractForm, which executes the showForm() method.
This method draws the ConnectionUI form that is presented to the user. Interacting with the UI
the user sends a sendConfirmation() message to the ConnectionUI object. The sendConfirmation()
message can be an event associated with the OK button shown in Figure 5, but this is not specified
during the abstract presentation modelling. The ConnectionUI object performs a getData() operation
that picks up the data provided by the user. After collecting the data, the ConnectionUI object sends
a system operation message checkUser() to the �control� ConnectionController object, passing the
login name and password as parameters. The ConnectionController object prepares a query that is
submitted to a database management system. If there are objects of class Person with the provided
name in the database, the database instantiates Person. Then, the �control� ConnectionController
object sends a message to the �entity� Person object checking the provided password. If the password
is correct, the ConnectionController object creates a MainUI object and destroys the ConnectionUI.
The presented sequence diagram is restricted to the scenario where the user successfully logs into
the system. Unsuccessful attempts to log into the system scenario can be modelled as described in
Section 6.1.

Activities, as presented in Section 3, and abstract presentation models are weakly connected by the
flow objects in the activity diagrams. Indeed, AbstractComponents should be used in activity diagrams
to explain the data flow between the UI and the underlying application. However, we believe that a
well-defined relationship between activities and instances of AbstractForms can facilitate the design
of tasks and abstract presentation. For instance, activities that involve user interactions should be
supported by �boundary� objects. However, it is difficult to identify �boundary� objects from an
activity or to identify activities from �boundary� objects.

5 Concrete Presentation Modelling

Abstract presentation models do not describe which components compose each �boundary� class.
They also don’t provide any description of layout. Further, they do not describe how events of user
interface components relate to operations of �control� classes. Therefore, concrete presentation
models are required sometime during the UI design process.

5.1 Concrete Presentation Structure and Layout

From the concrete presentation point of view, the abstract presentation model presented in Figure 6
is the design pattern specification for the UI presentation model. This pattern has been called Pre-
sentation Framework. In fact, the design pattern approach, as presented in Gamma et al. [5] and
incorporated by UML, provides a way to describe how different environments can be accommodated
within the diagrams that use elements of the abstract presentation model, e.g. the sequence diagram
in Figure 4. Indeed, concrete presentation models are environment-dependent since they are described
in terms of environment classes and components. An environment in our terminology can be classes of
a object-oriented programming language, components or both. We are going to use Java [6] to show
how UI classes may be related to environment classes. The �cpm� stereotype is used to identify
these environment classes.

Figure 8 shows a concrete presentation model using the Presentation Framework and some Java
AWT components. The Presentation Framework is represented using a collaboration symbol of UML
with five different roles: AbstractForm, AbstractContainer, StaticDisplay, InteractionControl and Ac-
tionInvoker. The Presentation Framework pattern provides a clear description of how abstract presen-
tation classes are replaced by concrete presentation classes, respecting the relationships of the abstract
presentation model (Figure 6). In fact, Figure 8 also shows that the �cpm� Frame is bound to
the �apm� AbstractForm, the �cpm� Container is bound to the �apm� AbstractContainer, the
�cpm� Label is bound to the �apm� StaticDisplay, the �cpm� TextField is bound to the �apm�
InteractionControl and the �cpm� Button is bound to the �apm� ActionInvoker.



Figure 8: The concrete presentation models.

The Presentation Framework pattern can be extended to allow many components to be bound
to StaticDisplays, InteractionControls and ActionInvokers. This extension can provide a declarative
notation for modelling the mapping between abstract and concrete components. However, the con-
crete presentation model, as presented in Figure 8, provides what is required to model our case study.
Additionally, the concrete presentation model provides a description of how presentation layout can be
specified. Every instance of a class acting as a Container must have an instance of LayoutImplemen-
tation aggregated to it. Several categories of layout object can be added to the concrete presentation
model by adding them as subclasses of LayoutImplementation. The modelling of the UI presentation
layout is not entirely explained. Indeed, the concrete presentation model relies on the semantics of
the environment. In the case of the concrete presentation model of Figure 8, Java provides algorithms
embedded in methods that work as templates to model layouts for the presentation model of the UI.

The concrete presentation model based on the Presentation Framework does not cause large parts
of the design to be environment-dependent, providing a model with a flexible and well-established
relationship between the �apm� classes and the component classes. For instance, the components
presented in Figure 8 model Java’s AWT components. The Swing components, however, can replace
the AWT components naturally without breaking the abstract presentation model.

Figure 9 presents the concrete presentation model for the ConnectionUI presented in Figure 5.
This model is an object diagram where the links are: the compose and integrate links introduced
in Section 4.1, and the organise link that relates instances of Frame (playing the role of the Ab-
stractContainer) with their respective instances of LayoutImplementation. This link is mandatory for
each instance of Frame. Further, Figure 9 shows that Panels are being used instead of Containers to
model non top-level containers. This is possible since the subclasses of the bound classes can also be
considered as part of the concrete presentation model.

Figure 9: The concrete presentation model of the ConnectionUI.

5.2 Concrete Presentation Behaviour

Once we know how to model the structure of the concrete presentation model, we need to model the
presentation’s behaviour. Recalling Figure 9, there are a number of components that have behaviour



associated with them. For example, the OK object of class Button has an event associated with it that
is triggered when the user presses the button. On the other hand, the object PasswordLabel of class
Label does not have any event associated with it that needs to be handled by the application.

The first problem concerning presentation behaviour modelling is how to identify from UML
diagrams possible events associated with �boundary� objects. In our application model every
�boundary� object is an instance of Frame and has two operations that have events associated
with them: sendConfirmation() and sendCancellation().

Inspecting the application model, it can be seen that the sendConfirmation() message was described
in the sequence diagram in Figure 4. The sendCancellation(), however, was not modelled at all. In
fact, every message sent by an actor to a �boundary� object represents an event associated with an
UI component. Therefore, one possible way to model all presentation behaviour is by producing one
interaction diagram for each UI event. In the ConnectToSystem use case we only modelled one scenario:
the successful logging of the user into the system. Therefore, we need to model a ConnectToSystem
scenario where the CANCEL button is pressed.

Figure 10 shows the sequence diagram for the ConnectToSystem use case where the user presses
the button CANCEL. The CANCEL button pressing event is represented as a button pressed message
sent by the user to the graphical component CANCEL button. In fact, the button pressed message is a
concrete presentation model event since it specifies which kind of event the component button should
use to trigger the sendCancellation() message. Thus, the sendCancellation() message is sent to the
ConnectionUI object, interrupting the interaction of the user with the Library System.

Figure 10: A second sequence diagram for the ConnectToSytem use case.

However, modelling using one interaction diagram for each UI event is not a good strategy since in
a single use case scenario a user can interact with many �boundary� objects, and a single �boun-
dary� object can have tens, or even hundreds, of events associated with it. Therefore, the strategy is
to handle all combinations of events using a minimum number of interaction diagrams that describe
all possible events. The problem is not as bad as it seems, though. Many components encapsulate
part of the application behaviour. Complex components may reduce the number of events that a
�boundary� object needs to handle.

6 Event Modelling

As described in Booch [2], events are “things that happen”. Indeed, many things happen when we
are using an application: keys and buttons are pressed, the mouse is moved, messages are sent to the
network, etc. We are calling these things that happen events.

In a object-oriented user interface, inputs and outputs are streams of events [7]. Figure 11 shows
a general event model where user actions and synchronisation events are sent to an object-oriented
user interface as input events. The application, through its user interface, reacts to these input events
generating output events that are presented as visual feedback. Visual feedback can be normal feedback
or abnormal feedback. Abnormal visual feedback, such as error messages, is that associated with
difficulties encountered during the enactment of a user’s task.



abnormal feedback

normal feedback

user interface
object-oriented

user actions

synchronisation
events

Figure 11: The event model.

User actions, system events and normal visual feedback events have been discussed throughout this
paper. For instance, in Figure 4, users interact with �boundary� objects, �control� objects send
and receive messages of �boundary� objects and of �entity� objects, and �entity� objects send
and receive messages of �control� objects. Therefore, the aim of this section is to discuss a strategy
for modelling user interface features related to:

• Exceptions, which are a special kind of event since they are created when something unexpected
happened in the system. Indeed, a significant amount of the functionality of interactive applica-
tions may involve catering for the unexpected.

• Synchronisation events, which are generated inside the application to guarantee that data dis-
played in user interfaces are synchronised with data in the application.

Abnormal visual feedback can happen with synchronisation events, and synchronisation events can
be generated from system actions. However, they are modelled independently. Therefore, the following
sections discuss each of these special events in turn.

6.1 Modelling Exception Handling

Exceptions, as defined by Meyer in [16], are run-time events “that may cause a routine call to fail”.
Moreover, a routine call fails when it terminates its execution in a state not satisfying the routine’s
contract. These definitions are complex since they require further definitions such as the routine’s
contract definition, which is itself complex. Hence, identifying what is a fail and what is an exception
are not obvious tasks. Despite the formal definition, exceptions here are more akin to those used in
object-oriented programming languages such as Java [6] and C++ [18].

In terms of user interfaces, the important aspect of exceptions is that sometimes they are not entirely
solved by exception handlers, leading the application to provide visual feedback to users that something
is going wrong (or, at least, not going as expected). In fact, once activated, the exception handlers
try to solve the problems identified by the exceptions without notifying the users. Unfortunately,
exception handlers do not solve every kind of problem. Therefore, the user should be notified of those
unsolved exceptions or involved in choosing a solution to the problem.

The problem now is how to model the aspects of the user interface that are related to exception
handling.

6.1.1 Structural Aspects of the UI of Exception Handlers

In the application model there are many situations where exceptions and exception handlers can be
used. For example, the designer could choose to display an error message somewhere in the Connec-
tionUI form due to an exception raised during the execution of a database query.

In UML notation, exceptions are modelled as a stereotyped �send� dependency from a class
operation to an exception handler class [2]. Figure 12 shows a �send� dependency that links the
operation checkUser in the �control� ConnectionController class with the �exception� Database-
Fail class. Moreover, Booch et al. [2] proposes a hierarchy of exception handlers identified by the
�exception� stereotype. Usually, non-caught exceptions are sent to higher-level exception handlers
in the hierarchy until they are caught by an exception handler or until they reach the top-level handler
of the hierarchy. If some exception is not handled by �exception� DatabaseFail in Figure 12, then it
must be handled by �exception� Exception.

Exceptions can be generated in any class, since classes generally have methods (that are rou-
tines), which have contracts that can be broken. Despite the fact that exception handlers can act
as �control� classes, they are not modelled exactly as �control� classes. Instead, they can catch
exceptions (events) from classes of any category. In this case, �exception� classes are introduced.



Figure 12: The relationship between the UI and the exception handler.

The operations of these classes can be called from any method of any class, even from methods of
other �exception� classes.

One of the roles of �exception� classes is to act as �control� classes to �boundary� classes
when exceptions happen. However, there are situations where �exception� classes cannot control
a �boundary� class. For instance, if the exception handler requires some decision such as quit or
retry from the user, and the original �boundary� object does not have components to deal with
such an interaction, then a new �boundary� object should be created to provide the communication
between exception handlers and users.

In terms of the user interface, however, it is important to know how �boundary� classes are related
to this hierarchy of exceptions. Objects of �exception� classes can act as objects of �control�
classes. Therefore, �boundary� classes can be aggregated to �exception� classes. In Figure 12,
the �exception� DatabaseFail acts as a �control� class, handling the �boundary� DatabaseFailUI
class. The �handles� stereotype is used to identify the relationship between �boundary� classes
and their controllers.

6.1.2 Behavioural Aspects of the UI of Exception Handlers

Exceptions also affect the task model of the user interface since they can modify the flow of control from
activity to activity during a user interaction. For instance, the activity Perform search in Figure 3(b)
can raise a database exception [3] since a query is performed there.

book details search domain search precision
Specify Specify Specify

Perform search

else

View results

Select search option

[non-solved
ODMGException]

ODMGException
Handle

[quit]

[retry]

Select option

Figure 13: Exceptions in the task model.

The modelling of possible modifications to the flow of control of the task model is a straightforward
task since UML’s activity diagrams provide a branching notation. The outgoing transitions can be
re-routed to different activities, depending on boolean guard expressions. Figure 13 shows the activity
diagram of Figure 3(b) extended to model exception handling. The branch after the activity Perform



search (rendered as a diamond) re-routes the flow of control when exceptions happen during the
execution of Perform search. The guard [non-solved ODMGExceptions] re-routes the flow of control
to an activity called Handle ODMGException when an ODMGException is not solved by its handler.
Otherwise, the flow of control follows the usual route identified by the keyword else.

6.2 Synchronisation Event Modelling

We are calling synchronous UIs those UIs where displayed data is frequently updated while the
�boundary� objects are visible. Otherwise, they are asynchronous UIs.

User interfaces, and especially graphical UIs, are usually implemented using asynchronous mes-
sages [4]. Therefore, one additional problem concerning synchronous UIs is how to model them using
asynchronous messages only. The general idea for solving this problem is to refresh the �boundary�
objects with updated data as frequently as required. Therefore, the generation of events that produce
UI updating is a possible approach to modelling synchronous UI. In this case, the generated event is
called a synchronisation event. The natural candidates for synchronisation event generation are the
�entity� objects, since they are the location of the updated data. Synchronisation events could also
be generated by �boundary� and �control� objects, but they will need to query the �entity�
objects to get the updated data for each generated synchronisation event. Therefore, we are only
considering here the case where synchronisation events are generated by �entity� objects.

One possible approach to modelling synchronous events generated by �entity� objects is presented
by the class diagram shown in Figure 14.

<<boundary>>
BookStatusUI

Signals
StockUpdate

*1 BookStatusController
<<control>>

1

<<send>>
{every update}

StockItem
<<entity>> StockUpdate

<<signal>>

stockCode
status

1

Figure 14: The model of the synchronous BookStatusUI.

Some UML features not previously discussed are used to model the synchronous UIs: classes ren-
dered with heavy lines, classes rendered with a signal compartment, a time constraint in a dependency
relationship and the �signal� stereotype. Thus, we need to explain these features before explaining
the model.

• The heavy lines in BookStatusController and StockItem mean that the instances of these classes
are active objects. In fact, instances of BookStatusController must have some active behaviour
to “receive” the StockUpdate events generated by the instances of StockItem.

• The constraint {every update}, in the �send� dependency between StockItem and StockUp-
date, means that the instances of StockItem must generate a StockUpdate event every time the
StockItem is updated. This constraint means that the instances of StockItem have an active
mechanism for identifying state updates.

• The �signal� stereotype means that the instances of these classes are signalling to the system
that an event of type StockUpdate is happening. The meaning of this event, in this context, is
that the objects of class StockItem are pushing the updated status of the stock items to those
classes that are listening for this kind of event.

• The Signals compartment in the BookStatusController identifies that the instances of this class
can be listeners for the StockUpdate events. This means that the instances that are also listeners
are notified every time a StockUpdate event is generated.

Returning to the class diagram in Figure 14, we notice that every time that a StockItem update
happens the instances of StockItem generate a StockUpdate synchronisation event, that has the current
status of the stock item. Then, these events are listened for by the instances of BookStatusController,
which sends messages to the instances of the �boundary� class, updating the displayed data. The
attribute stockCode inside the StockUpdate signal works as an identification mechanism preventing the
BookStatusControl objects from displaying the status of different stock items.



This modelling approach is especially suitable for systems where synchronous UIs are essential.
In fact, the complexity of the pushing mechanism inside the �entity� objects is always the same.
For instance, complex �entity� objects can have many operations that change their state. However,
using this approach, as the state is monitored for updates, it is not necessary to identify the state
modification of the objects inside their methods. Moreover, the complexity of the pushing mechanism
is the same if the �entity� objects are displayed by one or several �boundary� objects. Indeed, the
event is sent to every object which has a signature for it. Therefore, one single synchronisation event
can notify however many listeners it has.

7 Putting All Together: Packaging the Application

Figure 15 shows a package diagram that provides an overview of the whole system. Further, this
package diagram shows dependencies between several components of the system.

Figure 15: The package diagram of the Library System.

The classes and class instances are grouped into six packages, as follows.

• The User Interface package composed of �boundary� classes and objects.

• The Abstract Presentation Model package composed of �apm� classes as shown in Figure 6.

• The Control package composed of �control� classes. These classes are presented in sequence
diagrams such as in Figure 4.

• The Domain Model package composed of �entity� classes. The class diagram of these classes
forms the domain model in Figure 2.

• The Environment package composed of those classes used to build the user interface. The en-
vironment could be an object-oriented programming language such as C++ [18], Java [6] or
Smalltalk, some components such as ActiveX and Java Beans, or even a composite set of compo-
nents and object-oriented programming languages. The environment concerns mainly the visual
part of the user interface, but it could be responsible for important user interface behaviours,
especially when considering the use of complex components.

• The Concrete Presentation Model package composed of those classes of the environment package
that are bound to �apm� classes of the Presentation Framework pattern.

8 Conclusions

This paper discussed user interface modelling using a Library System case study. The application
system was modelled using the Unified Modeling Language that has proved to be useful for modelling
user interfaces. In fact, UML has a rich set of constructors complete enough to model the architectural
aspects of form-based user interfaces. However, such UI modelling may not be as straightforward a
process as expected and desired. Indeed, some modelling problems were identified from the case study:

• UML does not describe clearly the relationship between use cases and activities (see Section 3).
Use cases do not provide some aspects of user requirements like goals, pre-conditions and post-
conditions that may help the design of activity diagrams.



• UML does not have a notation to describe abstract presentations (see Section 4). In fact, we
believe that UML needs such a notation in order to support the design of UI presentations.

• UML does not provide a relationship between classes providing an abstract presentation (Ab-
stractForms in Figure 6) and activities. In fact, it is difficult to identify which UI is related to
each activity that involves user interaction, as described in Section 4.3.

Additionally, the case study provides an illustrative example of the use of many UML constructors,
in terms of diagrams, for modelling the user interface. The summary of the UML diagrams used is
presented in Table 1, and the constructors are those used in the diagrams presented throughout the
paper.

User Interface Element UML Resource

Domain Model class diagram
Task Model activity diagram
Presentation Model (abstract and concrete) class diagram with design patterns

interaction (sequence) diagram
object diagram

Event - UI related with Exception Handler class diagram
activity diagram

Event - UI synchronisation class diagram

Table 1: Summary of the UML diagrams used to model UI elements.

We are using some of the Statecharts [11] constructors since we are using activity diagrams [10].
However, we are not considering the design of widgets in this paper. For this reason we are more
interested in inter-object transitions (activity diagrams), than in intra-object transitions (statecharts)
while modelling widgets.

There are also some lessons that can be learned from the modelling of the Library System:

• The design of an user interface is a complex process since it requires complete comprehension of
the elements that compose the user interface. Indeed, UIs in general have many elements that
are not clearly required from the beginning of the design.

• The elements of the user interface have many dependencies among them, as shown in Figure 15.
Therefore, the design process should consider UI modelling as integral.

There is room for further discussion of how to model user interfaces using UML. Indeed, there will
be other ways of representing user interfaces using UML. The study in this paper presents only one
approach.

Acknowledgements. The first author is sponsored by Conselho Nacional de Desenvolvimento Cient́ıfico
e Tecnológico - CNPq (Brazil) – Grant 200153/98-6.

References

[1] F. Bodart and J. Vanderdonckt. Widget standardisation through abstract interaction
objects. In Advances in Applied Ergonomics, pages 300–305, Istanbul - West Lafayette,
May 1996. USA Publishing.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA, 1999.

[3] R. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, and D. Wade. The Object Database Standard: ODMG 2.0.
Morgan Kaufmann, San Francisco, CA, 1997.

[4] D. Collins. Designing Object-Oriented User Interfaces. Benjamin/Cummings, Redwood
City, CA, 1995.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.



[6] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
Reading, MA, 1996.

[7] M. Green. A survey of three dialogues models. ACM Transaction on Graphics, 5(3):244–
275, July 1986.

[8] T. Griffiths, P. Barclay, J. McKirdy, N. Paton, P. Gray, J. Kennedy, R. Cooper, C. Goble,
A. West, and M. Smyth. Teallach: A model-based user interface development environ-
ment for object databases. In Proceedings of UIDIS’99, pages 86–96, Edinburgh, UK,
September 1999. IEEE Press.

[9] T. Griffiths, J. McKirdy, G. Forrester, N. Paton, J. Kennedy, P. Barclay, R. Cooper,
C. Goble, and P. Gray. Exploiting model-based techniques for user interfaces to database.
In Proceedings of VDB-4, pages 21–46, Italy, May 1998.

[10] Object Management Group. OMG Unified Modeling Language Specification, June 1999.
Version 1.3.

[11] D. Harel and E. Gery. Executable object modeling with statecharts. IEEE Computer,
30(7):31–42, 97.

[12] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-Oriented Software
Engineering: A Use Case Driven Approach. Addison Wesley, Reading, MA, 1992.

[13] P. Johnson. Human computer interaction: psychology, task analysis and software engi-
neering. McGraw-Hill, Maidenhead, UK, 1992.

[14] B. Kirwan and L. Ainsworth. A Guide to Task Analysis. Taylor & Francis, London, UK,
1992.

[15] S. Kovacevic. UML and user interface modeling. In Proceedings of UML’98 International
Workshop, pages 235–244, Mulhouse, France, June 1998. ESSAIM, Mulhouse.

[16] B. Meyer. Object-Oriented Software Construction. Prentice Hall, Upper Saddle River,
NJ, second edition, 1997.

[17] B. Myers and M. Rosson. Survey on user interface programming. In Proceedings of
SIGCHI’92, pages 192–202, 1992.

[18] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, third
edition, 1997.

[19] P. Szekely. Retrospective and challenges for model-bases interface development. In
Computer-Aided Design of User Interfaces, pages xxi–xliv, Namur, Belgium, 1996. Na-
mur University Press.


