
User Interface Declarative Models and

Development Environments: A Survey

Paulo Pinheiro da Silva

Department of Computer Science, University of Manchester

Oxford Road, Manchester M13 9PL, England, UK.

e-mail: pinheirp@cs.man.ac.uk

Abstract

Model-Based User Interface Development Environments (MB-UIDEs)
provide a context within which user interface declarative models can be
constructed and related, as part of the user interface design process. This
paper provides a review of MB-UIDE technologies. A framework for de-
scribing the elements of a MB-UIDE is presented. A representative collec-
tion of 14 MB-UIDEs are selected, described in terms of the framework,
compared and analysed from the information available in the literature.
The framework can be used as an introduction to the MB-UIDE tech-
nology since it relates and provides a description for the terms used in
MB-UIDE papers.

1 Introduction

The model-based user interface development technology aims to provide an en-
vironment where developers can design and implement user interfaces (UIs) in
a professional and systematic way, more easily than when using traditional UI
development tools. To achieve this aim, UIs are described through the use of
declarative models. There are three major advantages that derive from the
declarative user interface models (UIMs).

• They can provide a more abstract description of the UI than UI descrip-
tions provided by the other UI development tools [51, 35];

• They facilitate the creation of methods to design and implement the UI in
a systematic way since they offer capabilities: (1) to model user interfaces
using different levels of abstraction; (2) to incrementally refine the models;
and (3) to re-use UI specifications.

• They provide the infrastructure required to automate tasks related to the
UI design and implementation processes [47].



A major disadvantage of UIMs is the complexity of the models and their
notations, which are often hard to learn and use [29, 47]. However, it is expected
that an appropriate environment should help to overcome the UIM’s complexity,
providing features such as graphical editors, assistants and design critics to
support UI designers. In fact, the development of model-based user interface
development environments (MB-UIDEs) is still challenging since some essential
problems related to this technology are not completely solved.

• It is hard to demonstrate that UIMs describe the relevant aspects of the
UI required to generate running user interfaces. In fact, there are few
examples of running user interfaces generated from declarative UIMs [50,
43].

• The problem of how best to integrate UIs with their underlying applica-
tions is introduced in many papers [11, 12] but is not entirely addressed
for running user interfaces generated by MB-UIDEs.

• There is no consensus as to which set of models is the most suitable set
for describing user interfaces. Indeed, there is no consensus as to which
aspects of user interfaces should be modelled.

After more than a decade, research into model-based user interface tech-
nologies is achieving a level of maturity that can lead to effective development
of good quality UIs integrated with applications. Based on the potential ben-
efits these technologies can provide to UI developers, this survey provides a
review of these technologies summarising related information available from the
literature. Relevant aspects of fourteen MB-UIDEs, as presented in Table 1,
are compared and analysed throughout the paper. Details of how specific MB-
UIDEs are implemented are not presented here, and nor are specific notations
or tools.

MB-UIDE References Local

ADEPT [27, 23, 52] Queen Mary and Westfield College, UK
AME [28] Fachhochschule Augsburg, Germany
FUSE [38, 39, 25] Technische Universität München, Germany
GENIUS [21] University of Stuttgart, Germany
HUMANOID [44, 46, 26] University of Southern California, USA
JANUS [2, 3] Ruhr-Universität Bochum, Germany
ITS [50, 51] IBM T.J. Watson Research Center, USA
MASTERMIND [47, 9, 43] University Southern California, Georgia Inst. Tech., USA
MECANO [32] Stanford University, USA
MODI-D [35, 33, 34] Stanford University, USA
TADEUS [13] Universität Rostock, Germany
TEALLACH [16] U. Manchester, U. Glasgow, U. Napier, UK
TRIDENT [5, 4, 6] Facultés Universitaires Notre-Dame de la Paix, Belgium
UIDE [24, 15, 14] George Washington University, USA

Table 1: Surveyed MD-UIDEs.

This paper is structured as follows. Section 2 describes MB-UIDE’s evolution
and presents research efforts. Section 3 introduces a framework for comparing



and analysing the architectural components of the UIMs. Section 4 describes
the UI development process using a MB-UIDE. Section 5 presents how user
interfaces are described through declarative models. Design guidelines are also
introduced in this section. Section 6 describes the design environment through
the tools used to model, generate and animate the model-based user interfaces.
Conclusions are presented in Section 7.

2 Background

The literature contains many papers describing MB-UIDEs and their UIMs.
The first generation of MB-UIDE appeared as improvements to the earlier user
interface management systems (UIMSs) since they sought to execute user inter-
faces represented in a declarative way. The main aim of the MB-UIDEs of this
generation was to provide a proper way to execute a UI from the UIM. Exam-
ples of the the first generation of MB-UIDEs are COUSIN [18], HUMANOID
[44], MIKE [31], UIDE [24] and UofA* [42]. However, the UIMs of the first
generation of MB-UIDEs did not provide a high-level of abstraction for the de-
scription of the UI. For instance, user interface aspects like layouts and widget
customisation appeared early during the UI design process. Therefore, a new
generation of MB-UIDEs appeared providing mechanisms for describing UIs at a
higher level of abstraction [52]. Examples of the second generation of MB-UIDEs
are ADEPT [27], AME [28], DIANE+ [48], FUSE [25], MASTERMIND [47],
MECANO [32], MOBI-D [35], TADEUS [13], Teallach [16] and TRIDENT [5].
With MB-UIDEs of the second generation, developers have been able to spec-
ify, generate and execute user interfaces. Further, this second generation of
MB-UIDE has a more diverse set of aims than previous one. Some MB-UIDEs
are considering the use of computer-aided software engineering (CASE) tools
and notations such as OMT [36] in their development environment. Others are
aiming to achieve complete UI development.

Most of the papers describing these MB-UIDEs compare some of their fea-
tures with other MB-UIDEs, showing the differences among them. However,
they are focused more on introducing the new approach than introducing the
MB-UIDE technology. There are a few papers that provide overviews of the
MB-UIDE technology: Schlungbaum [37], Vanderdonckt [49] and Griffiths [17]
provide comparisons among many MB-UIDEs, and Szekely [47] provides an ex-
cellent insight into what an MB-UIDE is.

3 User Interface Model Framework

User interfaces convey the output of applications and the input from application
users. For this reason, UIs have to cope with the complexity of both the ap-
plications and the users. In terms of MB-UIDE’s architectures, this problem of
conciliating application complexity and user interaction complexity is reflected
in parts that MB-UIDEs usually have several models describing different aspects



of the UI. These models are referred to in this as component models or models.
Table 2 presents the four models considered in the framework, also presenting
which aspects of the user interface are described by each model.

Component Model Abbrev. Function

Application model AM Describes the properties of the application
relevant to the UI.

Task-Dialogue model TDM Describes the tasks that users are able to
perform using the application, as well as
how the tasks are related to each other.

Abstract presentation model APM Provides a conceptual description of the
structure and behaviour of the visual parts
of the user interface. There the UI is
described in terms abstract objects.

Concrete presentation model CPM Describes in details the visual parts of the
user interfaces. There is explained how the
UI is composed in terms of widgets.

Table 2: Component models of a user interface.

As the purpose of this framework is to provide a comparison among different
UIMs, three points should be considered:

• Task models and dialogue models are classified within a single model called
the Task-dialogue model. Both, task models and dialogue models describe
the possible tasks that users can perform during the interaction with the
application, but at different levels of abstraction. The reason for classify-
ing them together is that UIMs often only have one of them. Further, the
possible constructors of task and dialogue models may have similar roles.

• User models are supported in some UIMs (i.e. ADEPT, MECANO and
TADEUS). Indeed, user models are important for the model-based user
interface technologies since they can provide a way to model user interface
preferences for specific users or groups of users. However, they are a chal-
lenging aspect of the UI not well-addressed in MB-UIDEs, and especially
not clearly described in the literature. Moreover, in those UIMs that have
a user model it appears that the user model can be replaced by design
guidelines. In fact, design guidelines usually contain user preferences that
can be considered as a model of a group of users.

• Platform models, or environment models, are not contemplated in the
framework for the same reasons that user models are not contemplated.

Models are composed of constructors. Table 3 shows the constructors con-
sidered in the framework. The table also shows a possible distribution of these
constructors into the component models, a concise description of each construc-
tor, and abbreviations for future reference. The distribution of the constructors
into component models, as presented in Table 3, helps to clarify their function
in the framework. Definitions of application model constructors are partially
extracted from UML [8]. Definitions of task model constructors are partially



extracted from Johnson [22]. Definitions of abstract and concrete interaction
objects are partially extracted from Bodart and Vanderdonckt [6].

Comp. Constructor Abbrev. Function
model

AM class CLASS An object type defined in terms of attributes,
operations and relationships.

attribute ATTR A property of the thing modelled by the objects
of a class.

operation OPER A service provided by the object of a specific
class.

relationship RELAT A connection among classes.
TDM task TASK An activity that changes the state of specific

objects, leading to the achievement of a goal.
Tasks can be defined at different levels of
abstraction, which means that a task can be a
sub-task of an abstract class.

goal GOAL A state to be achieved by the execution of a
task.

action ACTION A behaviour that can be executed. Actions are
the most concrete tasks.

sequencing SEQ The temporal order that sub-tasks and actions
must respect for carrying out the related
high-level tasks.

task pre-condition PRE Conditions in terms of object states that must
be respected before the execution of a task or
an action.

task post-condition POST Conditions in terms of object states that must
be respected after the execution of a task or
an action.

APM view VIEW A collection of AIO’s logically grouped to deal
with the inputs and outputs of a task.

abstract interaction AIO A user interface object without any graphical
object representation and independent of any

environment.
CPM window WINDOW A visible and manipulable representation of a

a view.
concrete interaction CIO A visible and manipulable user interface object
object that can be used to input/output information

related to user’s interactive tasks.
layout LAY An algorithm that provides the placement of

CIOs in windows.

Table 3: User interface model constructors.

One point that should be considered in terms of constructors is that MB-
UIDEs do not need to have all constructors presented in the framework. Further,
constructors can be distributed in a different manner from that proposed in
Table 3.

4 User Interface Development in a MB-UIDE

The UI development process is normally an incremental process in a MB-UIDE.
User interface design and implementation can easily be repeated however many
times are required to refine the UI specification and code. In reality, some MB-
UIDEs are not flexible enough in terms of code refinement. Considering the
UI development process, two distinct subprocesses can be identified. The first
one is the UI design, that results in the creation of a UIM. The second one is



the UI implementation, that results in an executable UI. Section 4.1 presents
an overview of how possible UI design processes in a MB-UIDE. Section 4.2
presents how parts of the UI design process can be automated. Section 4.3
presents an overview of the UI implementation process.

4.1 User Interface Design Process

In a MB-UIDE, the UI design is the process of creating and refining the UIM.
As stated in Section 3, there is not agreement on which set of models are the
best for describing UIs in a declarative manner. In terms of UI design, there is
also a lack of agreement as to which is the best method for UI modelling.

According to Figure 11, some modelling tools can be provided by MB-UIDEs
for editing the models, and modelling assistants can be provided to support UI
developers. These modelling tools usually provide a graphical environment that
may facilitate the complex work of constructing UIMs. It is expected that
these modelling tools can prevent UI developers for worrying about details of
the models and their notation, focusing their attention on the design of the UI.
Additionally, some MB-UIDEs have modelling assistants that can perform some
functions, such as model checking, that provide feedback to developers about
the design process.

presentation model
Concrete

Application
model

User interface model

Developer

Modelling

Modelling
assistants

tools

presentation model
Abstract

Task-dialogue
model

Abstract
design tool

Concrete
design tool

Design
Knowledge

Presentation
Guidelines

Figure 1: The user interface design in a MB-UIDE.

MB-UIDEs based on textual UIMs optionally may not require any special
editor or assistant. This may be an excellent approach for expert developers that
could build and refine models using any text editor. In fact, MB-UIDEs based on
textual UIMs that offer model editors and assistants give freedom to developers
to use or not the model development environment provided. The problem of
MB-UIDEs based on textual models are that they may not offer any special
facilities for model management. In this case, the cost of constructing UIM
descriptions might be higher than the benefits provided by such environments,
specially for non-expert developers.

There are MB-UIDEs that use existing graphical editors and CASE tools

1Traditional diagram describing the user interface development process in MB-UIDEs,
presented in Szekely [45], Schlungbaum [37] and Griffiths et al. [16].



as their model editors. In this case, the problem is that tools could not accept
modifications to accommodate specific requirements for editing UIMs.

As UIMs can describe UIs at different levels of abstraction, it is expected
that the design process should be incremental. Thus, UIs could initially be
described by a very abstract model that can gradually be transformed into a
concrete model. Considering this iterative design process, developers can edit
the models using the modelling tools, and check the model using the design
assistants, until the UIM reaches a point where the relevant details are modelled
into the UIM. Further, developers can at any time return to the MB-UIDE to
refine the model, even after the implementation of the UI. The problem, in
this case, is that the UI should be modified only through the MB-UIDE since
modifications not described in the UIM are obviously not regenerated, in the
new version of the UI.

4.2 Automated Tasks in User Interface Design Process

Some papers claim that the real advantage of the model-based UI technologies
is the support they provide to automate the UI design [30]. Indeed, it is a
powerful characteristic of the UIMs that they can describe UIs at different levels
of abstraction.

Figure 1 shows how UI design automation fits into the development activ-
ity. An abstract design tool can generate the abstract presentation model from
application models or task-dialogue models, using a design knowledge database
to supply information required during the UI design process. Additionally, a
concrete design tool can generate the concrete presentation model from the ab-
stract presentation model, and using a design guideline database. The design
guidelines are not part of the user interface model, but they are part of the
MB-UIDE.

Most of the research related with UI development concerns the “look and
feel” aspects of the UI. For this reason, there are many well-known guidelines
concerning the presentation of the UI [40]. On the other hand, there are some
research efforts that analyse how to model tasks during human-computer inter-
action. However, the guidelines provided by these studies are not established
enough to be used as a proper design knowledge database [52]. Therefore, part
of the automated UI design process related with the task-dialogue model is
affected by this lack of well-established task modelling guidelines.

At the same time such automated design facilitated the work of UI devel-
opers, it also creates a new problem: how UI developers can interfere in this
automated process to design UIs with different characteristics to those provided
by design knowledge design guideline databases [47].

4.3 User Interface Implementation Process

Figure 2 illustrates three approaches to generating and executing a user inter-
face, in the context of a MB-UIDE. In the first approach shown in Figure 2a,



the source code of the user interface is generated based on the toolkit class li-
brary. In this approach, the MB-UIDE generates the source code of the user
interface, and sometimes it generates the skeleton of the application. In the
second approach shown in Figure 2b, the UI is executed by the UIMS runtime
system linked with the application. A UIMS input-file generator is required,
in this case, to convert the UIM into the UIMS input-file format. In the third
approach shown in Figure 2c, the application can interpret the UIM directly
due to the MB-UIDE runtime system being linked to the application.

Compiler/
Linker

User interface
model

mainstream

source code
application

class library
Toolkit

Application

Source code
generator

Toolkit-ready
file

(a)

Compiler/
Linker

User interface
model

mainstream

source code
application

UIMS runtime
system

Application

generator specification file
UIMS - UIUIMS input-file

(b)

Compiler/
Linker

User interface
model

mainstream

source code
application Application

(c)

runtime system
MB-UIDE

Figure 2: The three approaches for implementing a user interface in a MB-UIDE.

The UI implemented using the first approach has the advantage that it is en-
tirely coded inside the application, providing a natural integration between the
UI and the application. However, the UI produced using the first implementa-
tion approach is more static than the UIs produced using the other implementa-
tion approaches, which are able to be reconfigured more easily at runtime. The
UI implemented using the third implementation approach, however, tends to
have a performance worse than the UIs implemented using the first and second



approaches since it is expensive to interpret the UIM at runtime.
The implementation tools in Figure 2 can be classified into two categories,

defined as follows.

• UI generators: These are tools that make the application independent of
the UIM. In this case, source code generators (Figure 2a) and UIMS input-
file generators (Figure 2b) are UI generators. For instance, MB-UIDEs
that can execute a UI directly from the UIM do not have UI generators.

• UI runtime systems: They are those tools that execute the user interface
when the application is running. In this case, the application itself in
the first implementation approach (Figure 2a), the UIMS runtime system
(Figure 2b) and the MB-UIDE runtime systems are UI runtime systems.
UI runtime systems are essential tools for MB-UIDEs.

One relevant observation concerns MB-UIDE terminology. The term UI
generation can be used to refer to the process of generating the input-file of the
UI runtime system, as described above, or to refer to the process of generating
the concrete presentation model from abstract presentation models, application
models and task-dialogue models. In this paper, we use the term UI generation
to refer to the first process.

5 Declarative Models

The UIM is certainly the most important element of a MB-UIDE. In fact, the
UI is designed in terms of the UIM, generated from the UIM and sometimes
executed from the UIM. Therefore, it is important to understand how UIMs
are composed in terms of their models and constructors. Further, it is also
important to know what notations are used to represent these models.

5.1 Models

Table 4 presents the models of the MB-UIDEs in terms of the framework. The
terms used in the table are those used in the literature to identify the models.

The application model is present in every user interface model. In fact,
the MB-UIDE technology appeared initially as an improvement in the user
interface management systems (UIMS), where a clear distinction between the
user interface and the mainstream application is required.

The presentation model, like the application model, is always considered
in declarative models. However, there are MB-UIDEs that do not have an
abstract presentation model such as MASTERMIND and MECANO. In other
MB-UIDEs such as HUMANOID, TADEUS and Teallach, it is not clear the
distinction between the abstract and concrete presentation models. In this last
case, designers normally have the flexibility to gradually refine the presentation
description from an abstract model to a concrete model.



MB-UIDE Application model Task-Dialogue model

ADEPT problem domain task model
AME application model OOD
FUSE problem domain model task model
HUMANOID application semantics design manipulation, sequencing,

action side effects
JANUS problem domain (none)
ITS data pool control specification in dialog
MASTERMIND application model task model
MECANO domain model user task model/dialogue model
TADEUS problem domain model task model/navigation dialogue
TEALLACH domain model task model
TRIDENT application model task model

MB-UIDE Abstract presentation model Concrete presentation model

ADEPT abstract user interface model prototype interface
AME OOA prototype
FUSE logical UI UI
HUMANOID presentation presentation
JANUS (not surveyed) (not surveyed)
ITS frame specification in dialog style specification
MASTERMIND (none) presentation model
MECANO (none) presentation model
TADEUS processing dialogue processing dialogue
TEALLACH presentation model presentation model
TRIDENT (not surveyed) presentation model

Table 4: MB-UIDE’s component models.

Finally, declarative models also consider the use of a task-dialogue model
to describe the possible interactions between users and applications using the
presentation and application models. Some MB-UIDEs describe these interac-
tions at a dialogue-level such as HUMANOID, MASTERMIND and ITS. Other
MB-UIDEs, especially those developed after ADEPT, describe the interactions
at a task-level, more abstract than the dialogue-level. However, there are MB-
UIDEs such as MECANO and TADEUS that describe the possible interactions
at both dialogue and task levels.

5.2 Constructors

Having identified the models, we need to identify the model constructors. As we
did for models, Table 5 presents the model constructors using the terminology
available in the literature for the specific proposals. The column constructor
refers to the abbreviation for constructors introduced in the framework (Ta-
ble 3). Constructors not present in Table 5 are not used in the specific system,
or at least were not identified in the literature.

5.3 Model Notations

While Section 5.1 has indicated what models are present in different proposals,
the semantics of the individual models in different contexts has not yet been
touched on. Table 6 shows the several different notations used by the models of



MB-UIDE Constructor Name

Adept TASK task
GOAL goal
SEQ ordering operator +

sequencing
AIO user interface object
CIO UIO

AME CLASS OOA class
ATTR slot/OOA attributes
OPER OOA operation
RELAT relation type
ACTION behaviour
AIO AIO
WINDOW OOD class
CIO CIO
LAY layout-method

Humanoid CLASS object type
ATTR slot
OPER command
TASK data flow constraints
GOAL goal
ACT behaviour
SEQ guard slots’ constraints,

triggers
PRE sequential pre-condition
POST action side-effect
AIO template
WINDOW display
CIO display, interaction

technique
LAY layout

Janus CLASS class
ATTR attribute
OPER operation
RELAT association, aggregation
CIO interaction object
WINDOW dialog widow (UIView)

MB-UIDE Constructor Name

ITS CLASS data table
ATTR field
VIEW frame
AIO dialog object
EVENT event
ACT action
WINDOW root unit
CIO unit
LAY style attribute

Mastermind CLASS interface
ATTR attribute
OPER method
TASK task
GOAL goal
SEQU connection type
WINDOW presentation
CIO presentation part
LAY guides, grids,

conditionals

Teallach CLASS class
ATTR attribute
OPER operation
TASK task
SEQ task temporal

relation
VIEW free container
AIO AIO
WINDOW window
CIO CIO

Table 5: MB-UIDE’s constructors.

different proposals.
We notice in Table 6 that there are UIs entirely described by models using

a single notation. In general, these notations have been developed specifically
for the MB-UIDE. They can be completely new as in ITS’s Style rules [50, 51],
or they can be extensions of other notations, as in MASTERMIND’s MDL that
is an extension of CORBA IDL [41]. The use of a single notation can be useful
to describe how the models collaborate with each other. However, specially
due to the requirement of graphical notations, UI models tend to use different
notations. For example, JANUS, TADEUS, TRIDENT, Teallach, and Adept
models use more than one notation. It is not feasible to provide a categorisation
of these UIMs in terms of their notations here because they tend to be specific to
each MB-UIDE. For instance, there are many MB-UIDEs that use a hierarchical
task notation to model their task-dialogue models, however, the notation may
not be precisely formalised, as in Teallach.

The use of standard notations appears to be an aim. For instance, MAS-
TERMIND’s notation is based on CORBA IDL, and AME and TADEUS apply
OMT [36] in some of their component models, since these are notations available
for describing other parts of the application. In fact, OMT can be used during
the analysis and design of the mainstream application, and CORBA IDL can
be used during the implementation of the mainstream application.

A comprehensive explanation of the semantics of these notations is outside
of the scope of this survey. The references required to find out more about these
notations are also provided in Table 6 .



MB-UIDE Notation Models

ADEPT task knowledge structures (TKS) [20] TDM
LOTOS [7] TDM
Communicating Sequential Process (CSP) [19] TDM, APM

AME OOA/OOD [10] AM
OMT [36] AM

FUSE algebraic specification [53] AM
HTA [22] TDM, UM
Hierarchic Interaction graph Template (HTI) APM, CPM

HUMANOID uses a single notation which was not specified all models
JANUS JANUS Definition Language (extended AM

CORBA IDL and ODMG ODL)
ITS Style rule [50, 51] all models
MASTERMIND MDL [43] (extended CORBA IDL [41]) all models
MECANO MIMIC [32] (extended C++) all models
MOBI-D MIMIC (see MECANO’s notation) all models
TADEUS specialised HTA TDM

OMT [36] AM, UM
Dialogue Graph (specialised Petri net) TDM

TEALLACH hierarchical tree with state objects TDM
hierarchical tree AM, APM, CPM

TRIDENT Entity-Relationship-Attribute (ERA) AM
Activity Chaining Graph (ACG) TDM, APM, CPM

Table 6: Model notations.

5.4 Model Integration

Models are integrated, although it is not unusual for the literature to be unclear
on the precise nature of such integration. Indeed, Puerta and Eisenstein [34]
said that there is a lack of understanding of UIM integration, denoting this
problem as the mapping problem.

One strategy to finding out how these models are integrated is through the
compilation of the relationships of constructors in different component models.
Table 7 shows some of those inter-model relationships, relating the relation-
ship constructors with their multiplicity. The multiplicity between brackets is
described in UML notation [8]. Additionally, the figure in Table 7 shows graph-
ically how the models are related to each other in the MB-UIDEs.

The presentation model can be considered as a set composed of the APM,
the CPM, and the relationships between the APM and CPM. Our strategy
to analyse the figure in Table 7 is based on the identification of how AMs
relate to presentation models. There are two approaches to relating AMs and
presentation models. The first and most frequent approach is creating direct
relationships between the two models, such as in HUMANOID, JANUS, ITS
and MECANO. The second approach is using the TDM. In this case, there are
relationships between the AM and the TDM, and between the TDM and the
presentation model, such as in MASTERMIND and Teallach.

In AME and ADEPT, for instance, there are relationships between the APM
and the TDM, but these relationships do not provide a link with the AM that
is directly linked with the APM. In this case, the link is more between the AM
and the TDM than between the AM and the presentation model.



MB-UIDE Inter-model relationship
Constructor Constructor

ADEPT ACTION (1) AIO (*)
AME CLASS (1) AIO (1..*)

CLASS (1) WINDOW (0..1)
ATTR (1) AIO (1)
WINDOW (1) AIO (1..*)
ACTION (1) AIO (1)

GENIUS VIEW (1) WINDOW (1)
AIO (1) CIO (1)

HUMANOID CLASS (1) CIO (1)
AIO (1) CIO (1)

JANUS WINDOW (1) CLASS (*)
AIO (1) ATTR (1)

ITS VIEW (1) ATTR (*)
CLASS (1) AIO (*)
AIO (1) CIO (1..*)

MASTERMIND TASK (1) OPER (0..1)
TASK (1) CIO (0..1)
root TASK (1) WINDOW (1)

MECANO WINDOW (1) CLASS (1)
AIO (1) ATTR (1)

TEALLACH TASK (1) CLASS (0..*)
TASK (1) AIO (0..*)
TASK (1) VIEW (0..1)
WINDOW (1) AIO (0..*)
AIO (1) CIO (1..*)

TRIDENT WINDOW (1..*) VIEW (1)
AIO (1) CIO (0..*)

APM

CPM

AM

TDM

AME

HUMANOID

JANUS

MECANO

AME
JANUS
ITS
MECANO

MASTERMIND

MASTERMIND

TRIDENT
TELLACH
ITS
HUMANOID
GENIUS
AME

TEALLACH
AME

ADEPT

TEALLACH

Table 7: Discrete and graphical representation of the inter-model relationships.



6 Environments

MB-UIDEs are composed of tools where users can perform the tasks required
to design and generate a user interface, as described in Section 4. Thus, a
MB-UIDE architecture can be explained in terms of its tools. In fact, some
development environments provide a monolithic tool with which developers per-
form their tasks. Other environments provide distinct tools where developers
perform specific tasks, leading to a complete development of the UI. There is a
third kind of environment where developers perform part of their tasks in tools
not especially developed for the MB-UIDE, such as CASE tools, and the other
part of their tasks in tools especially developed for the MB-UIDE. This section
analyses MB-UIDE architectures through a comparison of their tools.

6.1 Design Environment

UI models are generally complex, leading to the modelling process also being a
complex task. Thus, modelling tools are usually provided to help the designer to
model the user interface. Table 8 produces a classification of environment tools
according to our tool classification. It is important to observe that some MB-
UIDEs are composed of tools that are responsible for more than one function,
then they are classified in more than one category.

MB-UIDE Modelling Editors Modelling Assistant

ADEPT Task model editor Interface generator
AUI editor object browser

AME OODevelopTool code generator
ODE-editor layout generator

FUSE FIRE FLUID
GENIUS Model Editing Tool Model Refinement Tool
HUMANOID (none) (none)
JANUS Paradigm Plus (OO CASE tool) (not surveyed)

Together C++ (OO CASE tool)
ITS not specified (none)
MASTERMIND Application Modeling Suite Dialog Critics

Task Modeling Suite
Presentation Modeling Suite

TADEUS Tadeus Tadeus
TEALLACH Teallach code generator

Table 8: Design environment tools.

6.2 Implementation Environment

UI implementation is a key activity in the use of a MB-UIDE. To generate
the UI, however, the MB-UIDE depends not only on the UIM, but also on
the environment that is being considered. As discussed in Section 4, a MB-
UIDE can implement a run-time interpreter for the UIM, generate code for an
existing UIMS, or generate code that uses a specific toolkit. Therefore, there
are basically three alternatives that can be considered for generating the user
interface.



Table 9 summarises the user interface generation tools of the MB-UIDEs.
There we see that some MB-UIDEs are based on a UIMS (e.g. TADEUS).
Other MB-UIDEs generate code for specific toolkits (e.g. AME, FUSE and
MASTERMIND generate code for C++, and Teallach generates code for Java).
The others, however, implement the whole environment (e.g. ITS’s dialog man-
ager, FUSE’s BOSS). One interesting approach is that used by AME and MAS-
TERMIND that provide UI prototyping using UIMSs, but that generate code
for C++. That way, these MB-UIDEs can offer to their users the benefits of
alternative approaches to generating a user interface.

MB-UIDE UI Generator UI Runtime System

ADEPT interface builder interpreter
AME AME/C++ code generator application code

Open Interface code generator Open Interface (UIMS)
not specified KAPPA-PC runtime system

FUSE BOSS[38, 39] (not surveyed)
GENIUS (not surveyed) runtime system
HUMANOID (none) Humanoid runtime system
JANUS C++ code generator application code
ITS (none) UI executed from the UIM
MASTERMIND Mastermind Prototyping Support AMULET [30] (UIMS)

C++ code generator application code
TADEUS not specified ISA Dialog Manager (UIMS)
TEALLACH Java code generator application code (Swing Toolkit)

Table 9: Implementation environment tools.

The implementation environment can also be composed of advisors and doc-
umentation generators. However, these tools are not discussed in this survey.

7 Conclusions

MB-UIDEs seek to provide a setting within which a collection of complementary
declarative models that can be used as a description of UI functionalities. This
survey has compared the models and tools provided by 14 MB-UIDEs. Declar-
ative models, model constructors and model notations were presented using a
comparative framework. Design and implementation tools were identified.

The MB-UIDE technology is just now becoming stable enough to be com-
mercialised as products e.g. Systemator [1]. Indeed, this is the result of practical
experiences with this technology, e.g. ITS was used by IBM to produce the UI
of the visitor information system of EXPO’92 [50, 51], and FUSE has been used
by Siemens to simulate an ISDN telephone.

However, there are many aspects of MB-UIDE technology that must be
studied in order to increase the acceptance of MB-UIDEs at the level of other
specialised UI development tools [29].

• Mapping between models. The aspects of UIs that it is relevant to model
in UIMs are well-understood. In fact, most of the surveyed MB-UIDEs
provide in some way a similar set of UI aspects that they can describe,



as observed in Table 4. However, it is unclear how best to model the
relationships between the constructors of the models used to describe UIs,
as observed in Table 7.

• UIM post-editing problem. Automated generated drafts of UI designs may
be manually refined in order to generate final designs. However, manual
refinements to generated designs are lost when developers regenerate other
draft designs. Therefore, it is still a problem how best to cope with post-
editing refinements.

• Standard notations for UIMs. The use of a standard notation may be use-
ful in order to describe different UIMs using a common set of constructors.
In fact, these constructors may facilitate the comparison and the reuse of
UIMs and their MB-UIDEs. For instance, the reuse of UIMs may be diffi-
cult these days since they are based on several notations, as presented in
Table 6. Further, the reuse of UIMs can be essential for make MB-UIDEs
scalable for real applications.

Acknowledgements. The author would like to thank Norman W. Paton and
the anonymous reviewers of this paper for their valuable comments. The author
is sponsored by Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
- CNPq (Brazil) – Grant 200153/98-6.

References

[1] Genera AS. Systemator. http://www.genera.no.

[2] H. Balzert. From OOA to GUI – The JANUS-System. In Proceedings of
INTERACT’95, pages 319–324, London, UK, June 1995. Chapman & Hall.

[3] H. Balzert, F. Hofmann, V. Kruschinski, and C. Niemann. The JANUS
Application Development Environment — Generating More than the User
Interface. In Computer-Aided Design of User Interfaces, pages 183–206,
Namur, Belgium, 1996. Namur University Press.

[4] F. Bodart, A. Hennebert, J. Leheureux, I. Provot, B. Sacre, and J. Van-
derdonckt. Towards a Systematic Building of Software Architectures: the
TRIDENT Methodological Guide. In Design, Specification and Verification
of Interactive Systems, pages 262–278, Vienna, 1995. Springer.

[5] F. Bodart, A. Hennebert, J. Leheureux, I. Provot, and J. Vanderdonckt. A
Model-Based Approach to Presentation: A Continuum from Task Analysis
to Prototype. In Proceedings of DSV-IS’94, pages 25–39, Bocca di Magra,
June 1994.

[6] F. Bodart and J. Vanderdonckt. Widget Standardisation Through Abstract
Interaction Objects. In Advances in Applied Ergonomics, pages 300–305,
Istanbul - West Lafayette, May 1996. USA Publishing.



[7] T. Bolognesi and E. Brinksma. Introduction to the ISO specification lan-
guage LOTOS. Computer Network ISDN Systems, 14(1), 1987.

[8] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, Reading, MA, 1999.

[9] T. Browne, D. Dávila, S. Rugaber, and K. Stirewalt. Formal Methods in
Human-Computer Interaction, chapter Using Declarative Descriptions to
Model User Interfaces with MASTERMIND. Springer-Verlag, 1997.

[10] P. Coad and E. Yourdon. Object-Oriented Design. Prentice-Hall, 1991.

[11] J. Coutaz and R. Taylor. Introduction to the Workshop on Software Engi-
neering and Human-Computer Interaction: Joint Research Issues. In Pro-
ceedings of the Software Engineering and Human-Computer Interaction’94,
volume 896 of Lecture Notes In Computer Science, pages 1–3, Berlin, May
1995. Springer-Verlag.

[12] B. Curtis and B. Hefley. A WIMP No More – The Maturing of User
Interface Engineering. ACM Interactions, 1(1):22–34, 1994.

[13] T. Elwert and E. Schlungbaum. Modelling and Generation of Graphical
User Interfaces in the TADEUS Approach. In Designing, Specification and
Verification of Interactive Systems, pages 193–208, Vienna, 1995. Springer.

[14] J. Foley. History, Results and Bibliography of the User Interface Design
Environment (UIDE), an Early Model-based Systems for User Interface
Design and Implementation. In Proceedings of DSV-IS’94, pages 3–14,
Vienna, 1995. Springer-Verlag.

[15] J. Foley, W. Kim, S. Kovacevic, and K. Murray. UIDE – An Intelligent
User Interface Design Environment. In Intelligent User Interfaces, pages
339–384. Addison-Wesley, ACM Press, 1991.

[16] T. Griffiths, P. Barclay, J. McKirdy, N. Paton, P. Gray, J. Kennedy,
R. Cooper, C. Goble, A. West, and M. Smyth. Teallach: A Model-Based
User Interface Development Environment for Object Databases. In Pro-
ceedings of UIDIS’99, pages 86–96, Edinburgh, UK, September 1999. IEEE
Press.

[17] T. Griffiths, J. McKirdy, G. Forrester, N. Paton, J. Kennedy, P. Barclay,
R. Cooper, C. Goble, and P. Gray. Exploiting Model-Based Techniques for
User Interfaces to Database. In Proceedings of Visual Database Systems
(VDB) 4, pages 21–46, Italy, May 1998. Chapman & Hall.

[18] P. Hayes, P. Szekely, and R. Lerner. Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN. In Proceedings
of SIGCHI’85, pages 169–175. Addison-Wesley, April 1985.

[19] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.



[20] R. Jacob. A Specification Language for Direct Manipulation User Inter-
faces. ACM Transactions on Graphics, 5(4):283–317, October 1986.

[21] C. Janssen, A. Weisbecker, and J. Ziegler. Generating User Interfaces from
Data Models and Dialogue Net Specifications. In Proceedings of Inter-
CHI’93, pages 418–423, New York, NY, 1993. ACM Press.

[22] P. Johnson. Human Computer Interaction: Psychology, Task Analysis and
Software Engineering. McGraw-Hill, Maidenhead, UK, 1992.

[23] P. Johnson, H. Johnson, and S. Wilson. Rapid Prototyping of User Inter-
faces Driven by Task Models. In Scenario-Based Design, pages 209–246,
London, UK, 1995. John Wiley.

[24] W. Kim and J. Foley. DON: User Interface Presentation Design Assistant.
In Proceedings of UIST’90, pages 10–20. ACM Press, October 1990.

[25] F. Lonczewski and S. Schreiber. The FUSE-System: an Integrated User In-
terface Desgin Environment. In Computer-Aided Design of User Interfaces,
pages 37–56, Namur, Belgium, 1996. Namur University Press.

[26] P. Luo, P. Szekely, and R. Neches. Management of interface design in
HUMANOID. In Proceedings of InterCHI’93, pages 107–114, April 1993.

[27] P. Markopoulos, J. Pycock, S. Wilson, and P. Johnson. Adept – A task
based design environment. In Proceedings of the 25th Hawaii International
Conference on System Sciences, pages 587–596. IEEE Computer Society
Press, 1992.

[28] C. Märtin. Software Life Cycle Automation for Interactive Applications:
The AME Design Environment. In Computer-Aided Design of User Inter-
faces, pages 57–74, Namur, Belgium, 1996. Namur University Press.

[29] B. Myers. User Interface Software Tools. ACM Transactions on Computer-
Human Interaction, 2(1):64–103, March 1995.

[30] B. Myers, R. McDaniel, R. Miller, A. Ferrency, A. Faulring, B. Kyle,
A. Mickish, A. Klimovitsky, and P. Doane. The Amulet Environment: New
Models for Effective User Interface Software Development. IEEE Transac-
tions on Software Engineering, 23(6):346–365, June 1997.

[31] D. Olsen. A Programming Language Basis for User Interface Management.
In Proceedings of SIGCHI’89, pages 171–176, May 1989.

[32] A. Puerta. The Mecano Project: Comprehensive and Integrated Support
for Model-Based Interface Development. In Computer-Aided Design of User
Interfaces, pages 19–36, Namur, Belgium, 1996. Namur University Press.

[33] A. Puerta and J. Eisenstein. Interactively Mapping Task Models to Inter-
faces in MOBI-D. In Design, Specification and Verification of Interactive
Systems, pages 261–273, Abingdon, UK, June 1998.



[34] A. Puerta and J. Eisenstein. Towards a General Computational Framework
fo Model-Based Interface Development Systems. In Proceedings of IUI’99,
Los Angeles, CA, January 1999. (to be published).

[35] A. Puerta and D. Maulsby. Management of Interface Design Knowledge
with MODI-D. In Proceedings of IUI’97, pages 249–252, Orlando, FL,
January 1997.

[36] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

[37] E. Schlungbaum. Model-Based User Interface Software Tools - Current
State of Declarative Models. Technical Report 96-30, Graphics, Visualiza-
tion and Usability Center, Georgia Institute of Technology, 1996.

[38] S. Schreiber. Specification and Generation od User Interfaces with the
BOSS-System. In Proceedings of EWHCI’94, volume 876 of Lecture Notes
in Computer Sciences, pages 107–120, Berlin, 1994. Springer-Verlag.

[39] S. Schreiber. The BOSS System: Coupling Visual Programming with
Model Based Interface Design. In Proceedings of DSV-IS’94, Focus on
Computer Graphics, pages 161–179, Berlin, 1995. Springer-Verlag.

[40] B. Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, Reading, MA, second edi-
tion, 1992.

[41] J. Siegel. CORBA: Fundamentals and Programming. John Wiley, New
York, NY, 1996.

[42] G. Singh and M. Green. A high-level user interface management system.
In Proceedings of SIGCHI’89, pages 133–138, May 1989.

[43] K. Stirewalt. Automatic Generation of Interactive Systems from Declarative
Models. PhD thesis, Georgia Institute of Technology, December 1997.

[44] P. Szekely. Template-Based Mapping of Application Data to Interactive
Displays. In Proceedings of UIST’90, pages 1–9. ACM Press, October 1990.

[45] P. Szekely. Retrospective and Challenges for Model-Bases Interface De-
velopment. In Computer-Aided Design of User Interfaces, pages xxi–xliv,
Namur, Belgium, 1996. Namur University Press.

[46] P. Szekely, P. Luo, and R. Neches. Facilitating the Exploration of Inter-
face Design Alternatives: The HUMANOID Model of Interface Design. In
Proceedings of SIGCHI’92, pages 507–515, May 1992.

[47] P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher.
Declarative Interface Models for User Interface Construction Tools: the
MASTERMIND Approach. In Engineering for Human-Computer Interac-
tion, pages 120–150, London, UK, 1996. Chapman & Hall.



[48] J. Tarby and M. Barthet. The DIANE+ Method. In Computer-Aided
Design of User Interfaces, pages 95–119, Namur, Belgium, 1996. Namur
University Press.

[49] J. Vanderdonckt. Conception assistée de la présentation d’une interface
homme-machine ergonomique pour une application de gestion hautement
interactive. PhD thesis, Facultés Universitaires Notre-Dame de la Paix,
Namur, Belgium, July 1997.

[50] C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Green. ITS: A Tool
for Rapidly Developing Interactive Applications. ACM Transactions on
Information Systems, 8(3):204–236, July 1990.

[51] C. Wiecha and S. Boies. Generating user interfaces: principles and use
of ITS style rules. In Proceedings of UIST’90, pages 21–30. ACM Press,
October 1990.

[52] S. Wilson and P. Johnson. Bridging the Generation Gap: From Work Tasks
to User Interface Designs. In Computer-Aided Design of User Interfaces,
pages 77–94, Namur, Belgium, 1996. Namur University Press.

[53] M. Wirsing. Algebraic Specification. In Handbook of Theoretical Computer
Science, pages 676–788. North Holland, 1990.


