
IWBase: Provenance Metadata Infrastructure for

Explaining and Trusting Answers from the Web

Deborah L. McGuinness Paulo Pinheiro da Silva
Cynthia Chang

Knowledge Systems Laboratory, Stanford University
Stanford, CA 94305, USA.

e-mail: {dlm,pp,csc}@ksl.stanford.edu

Abstract

If users are expected to depend on answers from applications and ser-
vices on the web, they need to have methods for asking for information
that will increase their understanding and their trust in the answers. One
way of increasing a user’s understanding and trust is to provide a sum-
marized or detailed description of how the answer was obtained. This
process would typically depend on some kind of proof structure defending
the answer but this alone (no matter how understandable and/or thor-
ough the proof is) is not enough. Any presentation of why a user should
depend on an answer also critically depends on metadata concerning el-
ements used in the proof such as underlying data sources, their authori-
tativeness, reasoning methods used, any uncertainties, etc. In this paper,
we introduce IWBase, a comprehensive OWL-based distributed and scal-
able infrastructure for effectively creating, storing, evolving, and using
proof-related metadata for explanations. IWBase is currently in use by a
number of DARPA and ARDA projects.

1 Introduction

Our research aims to improve user acceptance of answers by making them “ac-
tionable” and defensible. Answers will be actionable if users have enough infor-
mation about the answer to improve their understanding to a point that they
trust the answer and are ready to take action using the information. Answers
are defensible if the user requesting the answer can justify why it is valid. Our
approach is to provide explanatory information about the question answering
process that may expose how the answer was generated. Thus, explanations
can be directly presented to users or can be used to derive alternative explana-
tions. Either way, explanations depend on provenance metadata and provenance
metadata infrastructure to make answers actionable and defensible. Without

metadata, users may be unable to understand explanations because, for exam-
ple, they may be unable to gather critical information about sources accessed,
question answering systems, and inference methods. Without metadata, tools
may be unable to derive alternative (potentially more understandable) expla-
nations because the tools may not know which rules (rewriting rules) to use
for abstracting explanations. Without metadata, users may not trust answers
because because they may not have access to tools for checking the explanations
and for computing trust values for answers. Without metadata infrastructure, it
may also become too difficult for users, humans and agents, to include, maintain,
evolve and query provenance metadata.

In this paper, we describe what is required to enable explanations that im-
prove understanding and trust. These explanations may include information
about the knowledge sources used as well as the processes involved for accessing
and integrating knowledge. If answers are obtained simply by looking up stored
information in a data source, then justifications need to include provenance in-
formation about the data source such as its recency, authoritativeness, etc. If
answers are retrieved from multiple sources and combined in some manner, then
information about all sources used as well as combination techniques needs to
be accessible to interested users. If answers are obtained by information ma-
nipulation processes, then justifications need to be informed by descriptions of
the manipulation processes such as their authors, versions, inference strategies,
and assumptions. This kind of meta information is required in addition to the
actual proof trace of the manipulations that were performed.

It may be worth noting that our original explanation focus was on the infor-
mation manipulation area since our early target question answering applications
used reliable and familiar data sources and used complicated (and potentially
distributed) reasoning processes to reach conclusions. In those situations, users
were familiar with and trusted the source data but needed help in understanding
the deduction paths leading to conclusions. As our application focus expanded
to more typical web applications with diverse data sources, some of which were
likely to be unknown to users obtaining the final answers, it became clear that
providing the option of accessing provenance information was required, even if
just in a summary mode so that users could quickly check source usage. For ex-
ample, some question answering applications rely on knowledge bases that were
built and maintained using information extraction techniques, such as those in
UIMA [5]. The original data may be in free text sources where some of the free
text may be from known places like the AP news wire and other text sources may
be unfamiliar (and of unknown quality and recency). Users obtaining answers
based on these knowledge bases need to have the option of finding out which
raw text sources were used, when they were updated, how they were trans-
formed into structured knowledge bases, and then later how the information
was manipulated.

This paper introduces our research thrust on provenance metadata and
provenance metadata infrastructure that is required to present comprehensi-
ble and useful justifications of answers. The paper will describe the goals that
emerged from our effort to provide interoperable, distributed explanations in

web settings. We will introduce the terminology used in our approach and
then describe the distributed registries of provenance information required for
explanations and the supporting infrastructure for maintaining the registries.
We will introduce IWBase as a distributed repository of proof-related metadata
that provides a solution to our provenance requirements. We will present our
the IW architecture revealing the infrastructure (including registry and support
services) that provides a solution that is maintainable, scalable, distributable,
while supporting privacy and usability requirements. We will follow with an
example of provenance meta data in explanations. We will conclude with a
discussion of the relative merits of the approach, current and planned usage of
the implementation, and related work.

2 Requirements and Principles

In this section, we will discuss the requirements that arise while trying to achieve
the goal of improving user (and agent) trust in answers generated from dis-
tributed web-based applications. The requirements fall into three categories:
those relating to requirements for the solution infrastructure, those relating to
provenance of information, and those relating to applications that reason with
information in potentially interoperable manners.

We recognize that web applications may be distributed, large, reference in-
formation from multiple sources of varying quality and recency, and may serve
broad communities having diverse access needs. We have identified the following
goals for our provenance-based solution.

• Distributable: The approach should be amenable to providing an archi-
tecture that can access information that is not all resident in one place in
order to interact with potentially distributed web applications.

• Scalable: The approach should be able to scale with web applications that
may grow in orders of magnitude as a result of rapidly expanding web-
based data sources and user communities.

• Maintainable: The approach should include a scheme by which informa-
tion may be updated by authorized users and agents so that its information
is up to date. Additionally, the maintenance tools should provide enough
support so that updates are simple to do and automatable where possible,
since the value of the meta-data is directly tied to is recency.

• Privacy: The approach should be able to utilize information that may not
necessarily be viewable by all users, thus it must incorporate a privacy
scheme that supports appropriate updates, maintenance, and presentation
of private information only to authorized users and agents.

Solutions that improve trust in answers by offering information about the
data that was accessed during the answer generation need to provide infor-
mation about the data. We have identified the following requirements for the

provenance as a result of gathering requirements from a number of govern-
ment sponsored research programs including the High Performance Knowledge
Base program1, Rapid Knowledge Formation Program2, the DARPA Agent
Markup Language Program3), the ARDA AQUAINT4 and NIMD5 programs,
and DARPA’s IPTO Office programs. We also gathered requirements from work
on the usability of knowledge representation systems (e.g., [14]) and ontology
environments (e.g., [4, 12]). We have also gathered needs from the World Wide
Web Consortium efforts on CWM6 and the related reasoner effort on Euler7.
Additionally, we gathered knowledge provenance requirements from the pro-
grams above and from previous work on data provenance from the database
community(e.g., [2]) and more recently from work integrating information from
extractors such as the work in Tap8 [8] leading to our enhanced knowledge prove-
nance infrastructure [22] and information integrators (e.g., ISI’s Prometheus
mediator9 which uses information obtained from Fetch’s10 wrappers in appro-
priate domains). Additionally requirements have been obtained from efforts
to explain text analytics work (e.g., IBM’s UIMA [5]) as well as efforts to ex-
plain semantic matches using satisfiability engines (e.g., [7]) as work to explain
emerging semantic web reasoners such as Pellet [19], where we are working on
explaining contradictions.

More details on provenance metadata requirements are available in [15] and
[22], with a summary here.

Knowledge provenance includes information about the origins of data. It
includes

• Source name If facts are encountered in multiple sources, any integrated
solution needs to have a way of identifying from which source information
was taken and potentially which portion of the source was used.

• Date and author(s) of original information and any updates

• Authoritativeness of the source (is this knowledge store considered or cer-
tified as reliable by a third party?, is this source known to be known and
trusted by the user or agent or someone trusted by the agent?

• Degree of belief (is the author certain about the information?)

• Degree of completeness (Within a particular scope, is the source considered
complete. For example, does this source have information about all of
the employees of a particular organization up until a some date? If so,

1http://reliant.teknowledge.com/HPKB/
2http://reliant.teknowledge.com/RKF/
3http://www.daml.org
4http://www.ic-arda.org/InfoExploit/aquaint/
5http://www.ic-arda.org/Novel Intelligence/
6http://www.w3.org/2000/10/swap/doc/cwm.html
7http://www.agfa.com/w3c/euler/
8http://tap.stanford.edu
9http://www.isi.edu/info-agents/Prometheus/

10http://www.fetch.com

not finding information about a particular employee would mean that this
person is not employed, counting employees would be an accurate response
to number of employees, etc.)

• Term or phrase meaning (in natural language or a formal language)

• Term inter-relationships (ontological relations including subclass, super-
class, part-of, etc.)

Additionally, there are requirements for meta information that arise from
security, access, efficiency, and usage.

• Unique identifiers for provenance information

• Effective methods for indexing, storing, and querying provenance infor-
mation

• Persistence of provenance information

• Support for privacy levels in storage and access

• Support for views based on a number of criteria such as privacy level,
topic, thread, technical depth, etc.

• Support for reuse of provenance information – tool support may be re-
quired for retrieving and reusing meta-information across multiple queries,
e.g., the reuse of inference rule meta information generated by multiple
engines

Finally, there are requirements on meta data that arise from the fact that
meta data may be reasoned with and this reasoning may happen in a distributed
manner, thus interoperability becomes a requirement. Because applications may
use varying reasoning methods, provenance information is required about the
information manipulation techniques.

• The reasoner used

• Reasoning method (e.g., tableaux, model elimination, extraction type,
etc.)

• Inference rules supported by the reasoner

• Reasoner soundness and completeness properties

• Reasoner assumptions (e.g., closed world vs. open world, unique names
assumption, etc.)

• Reasoner authors, version, etc.

Explanation of the information manipulations goes beyond the scope of this
paper but more information on this topic is addressed in papers on explana-
tions of reasoning based on traces of reasoning steps and the Proof Markup
Language [21]

3 Terminology

In this section, we will introduce the terminology used in our approach. The IW-
Base architecture described in Section 4 has two main concepts: node elements
and the IWBase node. By defining node elements, we describe how meta-data is
classified and represented. By defining IWBase node, we describe the evolving
infrastructure for storing, maintaining and using proof-related metadata on the
Web.

3.1 Node Elements

Node elements11 are also Proof Markup Language (PML) elements. They are
instances of PML classes, which are OWL [17] classes (thus they are subclasses of
owl:Class). They are used to build OWL documents representing both proofs
and proof provenance information. Thus, PML concepts can be considered to
be either proof level concepts representing proof elements directly or provenance
level concepts representing information about terms used in a proof.

Proof elements are PML elements at the proof level and they are used
for building interchangeable, distributed proofs and explanations. NodeSet and
InferenceStep are the main types of proof elements. A NodeSet represents a
step in a proof whose conclusion is justified by any of a set of inference steps
associated with the NodeSet. Each node set has one URI. PML adopts the
term “node set” because each instance of NodeSet can be viewed as a set of
nodes gathered from one or more proof trees having the same conclusion. An
InferenceStep represents a justification for the conclusion of a node set. Inference
steps are anonymous OWL classes defined within node sets. For this reason, it
is assumed that applications handling PML proofs are able to identify the node
set of an inference step. Also for this reason, inference steps have no URIs.

Provenance elements are PML elements describing the origin of proof
elements. ProvenanceElement is a superclass of the PML concepts at the prove-
nance level(such as source, language, and inference rule). A taxonomy of prove-
nance elements is shown in Figure 1. The ProvenanceElement attributes are
described below:

• The URI of a provenance element is the unique identifier of the provenance
element. Every provenance element has one well-formed URI, which is an
instance of the primitive type anyURI.

• The URL of a provenance element describes an URL used to browse an
element’s web document. For instance, if the provenance element is an or-
ganization named the New York Times, then the http://www.nytimes.com
URL can be used to access a web document about the organization. In
this case the URL points to the organization’s web site. A provenance
element can have zero or one URLs.

11Terms defined in this Section are typed in bold.

Figure 1: Top of the PML taxonomy of provenance elements.

• The Name of a provenance element describes a short name (or “nickname”)
for the element within the IWBase. Every provenance element has one
name, and the name is an instance of the primitive type string.

• The Submitter of a provenance element represents the team of people12 re-
sponsible for the registration of the provenance element in IWBase. Every
provenance element has one submitter, and the submitter is an instance
of the type Team, which is a subclass of Source (see Figure 1).

• The DateTimeInitialSubmission of a provenance element is the date
when the provenance element was first registered in IWBase. Every prove-
nance element has one DateTimeInitialSubmission, and that is an in-
stance of the primitive type dateTime.

• The DateTimeLastSubmission of a provenance element is the last date
when the provenance element was registered in IWBase. Every provenance
element has one DateTimeLastSubmission, and that is an instance of the
primitive type dateTime.

• The EnglishDescription of a provenance element is a description in En-
glish of the provenance element. A provenance element can have zero or
one descriptions in English, and EnglishDescription is an instance of
the primitive type string. The description in English is intended to be
used by tools to present provenance elements to human agents. For ex-
ample, the description in English of the Modus Ponens inference rule may
be a better presentation and more informative for most users browsing a
PML document than the presentation of the formal logical specification
of the rule.

12Of course a team can consist of any number of people including zero known members to
date or a single member.

Provenance elements are formally specified in OWL13 and are briefly de-
scribed below. Further descriptions of provenance elements including the de-
scription of some relationships among provenance elements are available in [21].

A Source represents an entity which is the source of the original data. A
source can be either an Organization, an InferenceEngine, a Team, a Person
or a CreatedSource. CreatedSources can be Ontologies, Websites or, generally,
Documents. InferenceEngineis a particularly important source representing an
engine that is able to produce a justification for a given conclusion. Note that
the use of the term “inference engine” in this paper is not limited to engines with
reasoning capabilities. For example, a search engine retrieving information may
serve as an inference engine and it may provide a justification of its answer by
a direct assertion inference step. Similarly extraction modules may be viewed
as inference engines and, in fact, we have registered a number of extraction
modules from the UIMA extraction toolkit[5] so that extracted answers may be
explained in Inference Web using PML.

The Language provenance element is used to encode a language used to write
conclusions of node sets. Any language can be registered in IWBase including
formal logical languages, such as KIF, and natural languages, such as English,
and representation languages such as DAML+OIL and OWL.

An InferenceRule is a specialization of ProvenanceElement used for describ-
ing rules applied to premises deriving node set conclusions. An InferenceRule
can be either a PrimitiveRule or a DerivedRule. A PrimitiveRule is a type of an
inference rule that is implemented by one or more inference engines. A given
rule R1 may only be called primitive when it becomes associated with one or
more inference engines. Thus, assuming that R1 is implemented by an inference
engine E1, the inference engine may declare R1 to be a primitive rule. The
notion that R1 is a primitive rule for one specific engine is relevant since R1

may also be derived from R2, which is a primitive rule for another engine E2.
In this case, R1 may be registered once as a primitive rule and zero or more
times as a derived rule, depending on how many combinations of rules are used
to derive R1. A DerivedRule is an InferenceRule specified from a PML node set
schema with the restriction that each node set schema must have one and only
one inference step.

3.2 IWBase Node

IWBase Node critically depends on the IWBase registry, IWBase registrar and
IWBase configuration file so we will define these first.

An IWBase registry is a repository of provenance elements. In order to
support interoperability when sharing provenance metadata among Inference
Web tools and between Inference Web tools and other Semantic Web tools in
general, elements in the registry are stored as PML files. Thus, with the use
of Semantic Web tools, one can retrieve, parse, and use proof-related meta-
data. For querying and maintaining large quantities of metadata, the parsing

13The PML ontology version 0.9.0 is available at http://iw.stanford.edu/2004/07/iw.owl

of PML files has shown to be too expensive. Therefore, to increase scalability,
provenance elements are also stored in a database.

An IWBase registrar is a collection of applications used for maintaining
a registry. From a human user point of view, the registrar is an interactive
application where the user can add, update and browse the registry contents.
From a software agent point of view, the registrar is a collection of services for
querying and updating the registry. The registrar is responsible for keeping the
synchronization between the registry repository of OWL files and the registry
database.

An IWBase configuration file contains configuration and deployment in-
formation for IWBase node applications. Information is defined as parameters
in name/value pairs and loaded at application startup time. Global parameters
are shared among all applications deployed on the node. Each IWBase appli-
cation deployed on the node has its own collection of parameters, which can
override global parameters.

An IWBase node is a named collection of computing resources available in
a machine. One machine may have multiple nodes. In concrete terms, a node
is characterized by having the following resources:

• a registry;

• a registrar;

• access to read and write in a filesystem in order to store the registry, the
registrar and any optional IWBase applications;

• access to a web server platform14 supporting servlets/JSP and SOAP ser-
vices; serving the node filesystem; and providing facilities for user authen-
tication and authorization;

• permission to change the configuration of the web server;

• access to a database in a relational database management system (DBMS)15

including the following: permission to update the schema of the database;
permission to add and update tuples in the database;

• a collection of optional applications based on IWBase elements;

• a configuration file used to set parameters for the registry, some parameters
for the web server and DBMS, and parameters for IWBase applications
installed on the node.

One machine is allowed to have multiple nodes. Nodes is a common machine
may share filesystems, web servers and DBMSs. However, to accommodate its
registry, each node needs to have a non-shared directory in a shared filesystem
for the OWL files and a non-shared database.

14IWBase currently has support for Tomcat and Axis.
15IWBase currently has support for MySQL.

3.3 IWBase Applications

An IWBase application is an application installed under an IWBase node
web server, using the IWBase configuration file, and providing some function-
ality that depends on PML elements of the node. The registrar is an IWBase
application.

Engines can use any strategy for creating PML documents including the
use of PML generation services (PGSs), the use of the PML API, or even
the implementation of their own code to generate PML documents. IWBase
node’s PGSs, provide support for querying the registry through a combination
of queries to database(s) and OWL files. In addition to the use of indexes for
querying the registry, PGSs provide a mechanism for selecting and associating
provenance elements with proof elements. Even if none of those services are
critical for applications, users may still choose to use PGSs since they provide
an uniform way of generating PML documents thus supporting consistent usage
if the PML specification evolves.

We envision the addition of many IWBase applications to IWBase nodes.
For instance, at the moment we are developing an AnswerTrustComputation
service to compute trust values for answers. These services rely on a combination
of trust relations, some of which are already implemented in IWBase. These
services are supported by a trust network of users and node elements.

4 Architecture

We use the term IWBase to refer to an hypothetical “entire” collection of
IWBase nodes, whether nodes are interconnected or not and whether nodes are
available for use or not. In this section we discuss the different types of nodes and
node inter-communications in IWBase. Before discussing node configurations,
we may need to briefly discuss the roles of users on IWBase.

4.1 Users

IWBase users can play one or more of the following roles when interacting with
an IWBase node.

A node visitor is some “web user”, human or agent, using the node either
to inspect the registry or to interact with the registrar with the purpose of
browsing node elements. Node visitors do not need to be registered with the
node and do not have ownership of node elements. In public nodes, node visitors
may browse the entire content of the registry.

A node member is some user, human or agent, using the registrar for
maintaining node elements. Node members are registered with the node admin-
istrator in order to have access to the registrar for adding and updating node
elements. Node members are also registered as members of PML Teams (a PML
provenance element).

A node administrator is a human user responsible for the following tasks:
maintaining and tuning the IWBase node web server and DBMS; creating node

members; adding and removing IWBase applications; setting IWBase applica-
tion parameters in the node configuration file.

4.2 Nodes and Node Associations

An IWBase node is either a core node or a domain node. Some PML ele-
ments such as InferenceEngine, InferenceRule and Language (see Figure 1) are
so generic that it may be appropriate to gather them in a single node, the core
node, that is also publicly available for the other IWBase nodes. The current
demonstration registrar for the core node is available at: http://inferenceweb-
.stanford.edu/iwregistrar/ and is one example core node. The core node archi-
tecture is convenient when there is one set of entries that describe the main
meta information about the common engines, their rules, and representation
and reasoning languages. Empirically, we have found our current uses of Infer-
ence Web benefit from such a core node. However, domain ontologies and their
related meta information can vary widely from project to project thus these are
appropriate to maintain in project-specific domain nodes. Just as the notion
of “upper ontologies” is both popular and contentious, we anticipate some up-
per level ontologies to emerge that are popular enough and reused enough that
Inference Web users will find that it may be beneficial to have these included
in the core node registry. Alternatively, a user can have nodes owning entries
for relevant ontologies associated with domain nodes where the user is a node
member as described below in this section. We expect these decisions to evolve
with usage.

Private and public nodes. IWBase relies on typical internet and web
security apparatus, i.e., firewalls, for protecting access to node metadata. A
public node implements no restrictions for web users or agents to access the
node’s contents. If any kind of restriction is enforced, the node is private.
Other than the core node that is always public, nodes can be either public or
private.

The IWBase architecture also specifies some services supporting the collab-
oration between the nodes described as follows.

Domain node–domain node associations. Inter-domain communica-
tions are accomplished by configuring association links between nodes. An
association link from node B to node A means that services provided by node
B are based on meta-information coming from both B and A. To illustrate
the usefulness of association links, assume a link from vehicles to cars. Thus,
automated services for browsing the registry in vehicles would list elements
registered both in vehicles and cars. In this case, vehicles could leverage from
a relevant list of sources about cars available in cars, for example. Moreover,
vehicles could set associations links to other domain nodes such as bicycles
increasing the amount of meta-information available for using on proofs. Asso-
ciation links aim to increase elements’ re-usability, eliminate data duplication
among domain nodes, and to prevent inconsistency.

Mirrored core registry. Information in the core node registry is required
for running services for a domain node such as proof generation services. In

some situations, however, node services may have no access to the core node,
i.e., when a domain node has no access to the internet. In other situations,
although a domain node may have access to the internet, the cost of getting
information through the web can be too expensive and having a local copy of
the core registry reduces the internet traffic. If any of these situations occurs,
domain node administrators have the option of copying the content of the core
registry to a local filesystem and to set the domain node configuration file to
point to the local copy of the core registry, the called mirrored core registry.
The currency of the mirrored core registry depends on how often the domain
node administrator updates the copy. Core node elements are only registered
and maintained by the core node registrar and elements in the mirrored core
registry are not supposed to be updated.

Core node–domain node associations. Every domain node must have an
association with either the core node or a mirrored core registry. The association
is required since some classes of provenance elements supporting services in the
domain node, such as Language and Inference Engine, are available on the core
registry only. Using the configuration file, a domain node administrator can
choose which core registry the node should use.

5 Metadata in Action: An Example

The need for provenance elements is compelling when any kind of meta-cognition
activity is performed on proofs describing answer derivation (or answer compo-
sition, answer extraction, etc.). In this section we will illustrate how IWBase
elements support the following tasks: understanding proofs, generating expla-
nations from proofs, and checking the correctness of answer derivation processes
(by checking proofs). The example in this section is used to show IWBase sup-
port for checking proofs and for generating explanations from proofs. Some
details on how these tasks are performed are not exposed in the paper.

5.1 Understanding Proofs

Raw proof traces are often used by reasoner developers to debug their engines.
More sophisticated uses of proofs involve the exchange of proofs among rea-
soners in a hybrid reasoning environment [23] or the use of proofs as an input
for generating human understandable explanations [16]. In these examples and
in many others, providing information aimed at providing help understand-
ing proofs means accessing information often unavailable from reasoners. The
IWBrowser rendering of a proof in Figure 2 has several examples of uses of
the IWBase elements. There, each statement is annotated with the name of
the engine responsible for adding the statement to the proof, i.e., JTP - Java
Theorem Prover [6]. Further, if a statement is derived, the engine represents the
software responsible for the statement derivation in addition to representing the
source responsible for creating of the node set. For derived statements, the proof
is annotated with the inference rule applied by the engine to the statement’s

Figure 2: A typical proof.

antecedents allowing the derivation of the consequent statement. For example,
in Figure 2, the generalized modus ponens rule was used to conclude16 that
Ramazi had an office at SelectGourmetFood on April 1, 2003, which is repre-
sented in the proof as“(Holds (|hasOffice| |Ramazi| |SelectGourmetFoods|)
April 01 2003)”.

Proof annotations mentioned above are just few examples of IWBase ele-
ments associated with the proof in Figure 2. As presented in the IWBrowser,
node elements already increase the understanding of proofs for reasoner devel-
opers and even for other users not involved on the answer generation process,
e.g., a user trying to understand how the answer was produced. In Figure 2,
each PML element in the proof is rendered as a hot link leading to further in-
formation about proof elements. For example, Figure 4 presented later in this
section shows the outcome of selecting the hot link for the generalized modus
ponens rule. There, we can see information useful for increasing user under-
standing of the meaning of the rule such as a description in English of the rule
and a reference to a textbook.

5.2 Generating Explanations from Proofs

Ordinary users on the web are not expected to browse proofs in order to under-
stand answers. Instead, users should have access to a set of explanations, each
providing an alternative way for users to understand the answer. If a user does
not understand an answer, a user may explore one of these explanations in a
summary mode or in a detailed mode.

Abstracting proof traces into explanations is one way of explaining answers
that depend on IWBase elements. For example, Figure 3 shows an explanation
generated from the proof in Figure 2. The explanation consists of a simple
application of an explanation tactic for rewriting the proof in an abstracted
way and from there to render the proof in plain English. The explanation

16This used three antecedents representing a provisional conclusion about Ramazi’s office
and the lack of atypicality with respect to Ramazi’s office.

tactic is the key element for explaining the proof and it is represented and
stored as a derived rule in an IWBase domain node. The matching of the tactic
against the proof is performed by the PML Abstractor service. IWBrowser and
IWExplainer are examples of IWBase applications using the PML Abstractor
service.

Someone who owns a business typically has an office at that business. Because
Ramazi owned SelectGourmetFood on April 1, 2003 and SelectGourmetFood is
a business, it follows that Ramazi had an office at SelectGourmetFood on April
1, 2003.

Figure 3: An explanation derived from the proof in Figure 2.

Summarizing the usage of information sources and assumptions during an-
swer derivation is another alternative for explaining proofs that is based on
IWBase elements. Our premise is that users will understand and trust answers
more if they know more about the information sources for answers. Thus, the
summarization of sources and assumptions associated with a set of PML node
sets along with the possibility of further investigating the IWBase registration
of metadata is a simple and useful way of increasing user understanding and
trust of answers. Users also inherit the ability to search for sources associated
with proofs as a consequence of using PML, which supports full tracking of
provenance information [22].

5.3 Checking Proofs

Our experience with instrumenting engines to dump proofs in PML has demon-
strated that the identification of rules implemented inside engines is one of the
challenges in generating useful proofs. Rules are typically implemented as pro-
cedural methods rather than being derived from declarative specifications. Fur-
ther, methods implementing inference rules often have a number of optimization
strategies complicating the task of figuring out which rules are implemented in
an engine by inspecting the engine’s code. Thus, the characterization of methods
as inference rules is not always trivial task.

IWBase facilitates the work of figuring out which rules are implemented in an
engine since the core node has a number of registered primitive rules and some
of them are formally specified in Inference Meta Language (InferenceML)17 [20].
By checking steps of a proof against rule specifications in the core node, a tool
may be able to identify rules implemented in the engine producing the proof.

For example, the browsing of the generalized modus ponens rule used in
the proof in Figure 2 is shown in Figure 4. There, the rule specification
attribute is a sentence in InferenceML. This specification enables tools using
the PML Checker API to verify if the the proof steps using the rule represent a
correct application of the rules. This verification is possible due to the following

17InferenceML was formally known as Proof Protocol for Deductive Reasoning (PPDR).

facts: (1) the proof step is explicitly associated with a PML primitive rule; and
(2) the node element for the rule has a formal specification in InferenceML.

Figure 4: The IWBase element for the Generalized Modus Ponens inference rule.

There are, of course, many benefits to proof checking. For instance, one can
confirm the correctness of engine rule applications by running the PML checker
on PML proofs; and one can increase his/her level of trust in an answer if steps
in proofs for answers can be checked.

6 Discussion and Status

In this section, we will return to our goals and summarize our contributions
with respect to those goals. Our approach is distributed in that it supports a
number of IWBase nodes. The IWBase core node contains information common
to applications using proof-related metadata. The registry for the core node
could be either local or remote. IWBase may have multiple domain nodes that
contain information specific to any particular application. There is no limit to
the number of domain nodes and they can be physically located on any machine.
IWBase administration is also distributed since node administrators may make
the decisions about who can make updates by registering other members and
administrators.

The scalability of our approach is supported from a few perspectives. We
have utilized a database backend for IWBase so that we may leverage the scala-
bility and efficiency of DBMSs for querying and updating databases. We also do
not require registration of all meta data in our repositories; as long as meta data
is accessible, that is all that is required. For example, in our joint effort with
IBM to explain text analytics, we found the sheer volume of information to be

enough that a special purpose repository made sense that was tuned to the needs
of text extraction. This database is accessed when PML proofs are generated so
that provenance information is available for explanations on demand but is not
pro-actively registered in IWBase for all possible content. Additionally, when
we designed the Proof Markup Language, we chose to represent it in OWL and
stayed within the description logic (DL) portion of the language. Thus, when
we rely on reasoning with the OWL representations, we can claim the same effi-
ciency of reasoning that OWL-DL can claim. OWL-DL was designed specifically
to be a language for which efficient reasoners may be implemented.

The IWBase infrastructure includes tools to help minimize maintenance ef-
fort. This is intentional since we understand that the quality of the explanations
will be related to the quality and recency of the provenance metadata. We in-
clude a registration service that supports automatic registration of sources. We
also have included many reasoners and inferences in the core node in the hopes
that registration many times will be identifying which items to reuse rather than
providing original specifications of new inferences. We also provide checking ser-
vices to identify if PML dumps are consistent in their usage with the inference
rule registrations that they claim to contain.

The IWBase solution addresses privacy using internet and web security ap-
paratus as described in Section 4.2. Nodes can be private or public and access to
update the IWBase requires registration. While this solution has been adequate
to date, we do anticipate augmenting our privacy solution in order to address
more of the concerns of the intelligence community.

In terms of the provenance requirements we identified in Section 2, our cur-
rent solution includes explicit information for all but degree of completeness.

The primary contributions of our work with respect to provenance meta-
data infrastructure for explanations revolves around specifications, infrastruc-
ture, and tools. We have gathered requirements from a broad diversity of users
from many perspectives - backgrounds, usage, sophistication, etc. We have
collected the requirements in one place and have provided a description of a
solution architecture that meets these requirements. The solution is not only
described in papers but is also implemented in a freely available, open-source im-
plementation distributed through the Inference Web website18 and soon through
SemWebCentral19. This implementation can serve as infrastructure for other’s
explanation and trust efforts, or if required, it could serve as an operational
specification and starting point for someone to generated their own customized
solution. Our approach is also modular and stresses interoperability so one
could, for example, use our IWBase core node, some existing domain nodes,
some new internal domain nodes, our proof generation services and an internal
interface/browser interface.

IWBase, as part of the Inference Web, is gathering users and is currently
integrated with a large text analytics tool suite - UIMA. It has been integrated
with the JTP hybrid reasoning engine and is being used by a number of projects

18http://iw.stanford.edu
19http://www.semwebcentral.org/

that require explanations of hybrid reasoners - in particular in the CALO project
of the DARPA PAL program. As a result, it is explaining results from appli-
cations such as ISI’s Ariadne system [13], where information was scraped from,
how query management is done in terms of breaking up questions into smaller
pieces which together can answer a larger question, and it is also being integrated
with the University of Texas’s KM system [3] and the SRI’s SPARK system [18].
It is also being used by the KANI project within ARDA’s NIMD program which
means it needs to range from explaining text analytics to temporal reasoning to
context reasoning with hypotheticals.

Work is proceeding to both broaden and deepen IWBase capabilities. Since
explanations are improved when metadata information is more current and more
complete, we continue to improve the registration services. Currently IWBase
has services providing automatic support for maintaining node elements. There
are still open issues concerning automated inclusion of attributes to sources.
For instance, an agent needs to select and add authors to a registered document
but it may have difficulty since it is required to select the appropriate metadata
corresponding to the authors.

We are also working to support more flexible security strategies for accessing
domain nodes behind firewalls. For instance, some organizations may require
their domain nodes to be behind a firewall but they still want selected external
users to access parts of their registries.

7 Related Work

When we first specified our metadata registry requirements, we did a literature
search and did not find any existing solution that we believed could meet our
requirements (Section 2). Our initial approach was to extend Stanford’s Web-
Base [11] to register proof-related metadata. We learned from our own work
and that of Heery [10] that accessing metadata can be quite complex. IWBase
requires elements to be grouped and indexed by their types. This led us away
from an approach such as WebBase that indexes through a uniform attribute.
We decided to design an solution for registering metadata that was based on a
combination of a web repository and of a database system.

An agent’s ability to share metadata with other agents is a major reason for
IWBase to store proof-related metadata in the registry as OWL files. In fact,
the lack of a standard format for metadata was a concern in previous efforts to
build metadata registries [1].

The Dublin Core Metadata Initiative (DCMI)20 is probably the best-known
collection of bibliographic metadata. In the PML provenance element taxon-
omy, Document is the element representing Dublin Core metadata. Document
is the only non-extensible PML element and it is expected to conform with
DCMI. Furthermore, DCMI does have a registry21 for storing and maintaining
DCMI metadata and the registry shares a number of functional requirements as

20http://dublincore.org/
21http://dublincore.org/dcregistry/

described in [9] with IWBase. For instance, the IWBase and DCMI Registry
are expected to store reliable trusted information, to provide authoritative defi-
nitions, and to manage the evolution of their elements. One difference between
IWBase and DCMI Registry is that IWBase includes instances of metadata
types.

There are many registries of domain-specific metadata available on the web.
For example, the DoD Metadata Registry and Clearinghouse22 is a domain-
specific registry of software related metadata for use by the U.S. Department
of Defense. Other government agencies throughout the world have their own
registries. In the future, we expect applications that use government registries
such as this and/or maintainers of this registry to use information from IWBase.

8 Summary

This paper presents IWBase as a distributed, scalable, maintainable provenance
metadata infrastructure with a privacy strategy. Provenance metadata in IW-
Base may help users to understand and trust answers from applications and
services on the web. We gathered a set of requirements for provenance metadata
for web applications and designed and implemented a solution that addressed
these requirements. Specific contributions from this effort include:

• A distributed registry of provenance metadata with a taxonomy of prove-
nance elements specified in an interoperable proof interlingua (PML) based
on the Ontology Web Language.

• A registrar that provides support for the registration and maintenance of
provenance metadata. For humans, the registrar provides its functional-
ities through an interactive interface. For computer agents, it provides
automated services.

• Services for generating proofs in PML, checking those proofs against infer-
ence specifications, abstracting those proofs into understandable explana-
tions, and computing trust values for answers supported by those proofs
and explanations. We are able to provide these services because of the
infrastructure for provenance metadata.

IWBase is being used to support explanations of question answering applica-
tions that range from text analytics and aggregation to hybrid theorem proving
in academic, industrial, and government settings.

9 Acknowledgments

The authors would like to thank the following programs that funded portions of
this work: DARPA’s DAML and PAL programs and ARDA’s NIMD program.

22http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal

Additionally, we gratefully acknowledge valuable comments from Jose-Luis Am-
bite, Priyendra Deshwal, J William Murdock and Ilya Zaihrayeu.

References

[1] C. Blanchi and J. Petrone. Distributed Interoperable Metadata Registry.
D-Lib Magazine, 7(12), December 2001.

[2] P. Buneman, S. Khanna, and W.-C. Tan. Why and Where: A Characteri-
zation of Data Provenance. In Proceedings of 8th International Conference
on Database Theory, pages 316–330, January 2001.

[3] P. Clark and B. Porter. The Knowledge Machine Users Manual. University
of Texas, Austin, Austin, TX, 2004.

[4] A. Das, W. Wu, and D. L. McGuinness. Industrial Strength Ontology
Management. In I. Cruz, S. Decker, J. Euzenat, and D. L. McGuinness,
editors, The Emerging Semantic Web. IOS Press, 2002.

[5] D. Ferrucci and A. Lally. UIMA: An Architectural Approach to Un-
structured Information Processing in the Corporate Research Environment.
Journal of Natural Language Engineering, June 2004. To appear.

[6] R. Fikes, J. Jenkins, and G. Frank. JTP: A System Architecture and
Component Library for Hybrid Reasoning. Technical Report KSL-03-01,
Knowledge Systems Laboratory, Stanford University, Stanford, CA, USA,
2003.

[7] F. Giunchiglia and P. Shvaiko. Semantic matching. Technical Report Vol.
71, CEUR - WS, 2003.

[8] R. V. Guha, R. McCool, and E. Miller. Semantic search. In Proceedings
of the Twelfth International World Wide Web Conference (WWW2003),
pages 700–709, Budapest, Hungary, May 2003. ACM Press.

[9] R. Heery. Draft DCMI Open Metadata Registry Functional Require-
ments, October 2001. http://dublincore.org/groups/registry/fun req ph1-
20011031.shtml as accessed on 6 Nov 2004.

[10] R. Heery and H. Wagner. A Metadata Registry for the Semantic Web.
D-Lib Magazine, 8(5), May 2002.

[11] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. WebBase : A
repository of Web pages. Computer Networks, 33(1-6):277–293, May 2000.

[12] E. F. Kendall, M. E. Dutra, and D. L. McGuinness. Towards A Commer-
cial Ontology Development Environment. In International Semantic Web
Conference Late Breaking Topics, Sadinia, Italy, June 9-12 2002.

[13] C. A. Knoblock, S. Minton, J.-L. Ambite, N. Ashish, I. Muslea, A. G.
Philpot, and S. Tejada. The ariadne approach to web-based information
integration. International Journal of Cooperative Information Systems (IJ-
CIS), Special Issue on Intelligent Information Agents: Theory and Appli-
cations, 10(1/2):145–169, 2001.

[14] D. L. McGuinness and P. Patel-Schneider. From Description Logic Provers
to Knowledge Representation Systems. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, pages
265–281. Cambridge University Press, 2003.

[15] D. L. McGuinness and P. Pinheiro da Silva. Explaining Answers from the
Semantic Web. Journal of Web Semantics, 1(4):397–413, October 2004.

[16] D. L. McGuinness and P. Pinheiro da Silva. Trusting Answers on the
Web. In M. T. Maybury, editor, New Directions in Question Answering,
chapter 21. AAAI/MIT Press, October 2004.

[17] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. Technical report, World Wide Web Consortium (W3C), Decem-
ber 9 2003. Proposed Recommendation.

[18] D. Morley and K. Myers. The SPARK Agent Framework. In Proc. of the
Third Int. Joint Conf. on Autonomous Agents and Multi Agent Systems
(AAMAS-04), 2004.

[19] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL Ontologies. Sub-
mitted for publication.

[20] P. Pinheiro da Silva, P. Hayes, D. L. McGuinness, and R. Fikes. PPDR:
A Proof Protocol for Deductive Reasoning. Technical Report KSL-04-04,
Knowledge Systems Laboratory, Stanford University, Stanford, CA, USA,
March 2004.

[21] P. Pinheiro da Silva, D. L. McGuinness, and R. Fikes. A Proof Markup
Language for Semantic Web Services. Information Systems, 2004. (to
appear).

[22] P. Pinheiro da Silva, D. L. McGuinness, and R. McCool. Knowledge Prove-
nance Infrastructure. IEEE Data Engineering Bulletin, 25(2):179–227, De-
cember 2003.

[23] J. H. Siekmann, C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler,
A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner,
I. Normann, M. Pollet, V. Sorge, C. Ullrich, C.-P. Wirth, and J. Zimmer.
Proof Development with OMEGA. In Proceedings of 18th International
Conference on Automated Deduction, volume 2392 of LNCS, pages 144–
149, Copenhagen, Denmark, July 2002. Springer.

