
Abstract
The World Wide Web lacks support for
explaining information provenance. When web
applications return answers, many users do not
know what information sources were used, when
they were updated, how reliable the source was,
what information was looked up versus derived,
and if something was derived, how it was
derived. In this paper we introduce the Inference
Web (IW) that addresses the problems associated
with opaque query answers by providing
portable, combinable, and distributed
explanations. The explanations include
information concerning where answers came
from and how they were deduced (or retrieved).
The IW solution includes: an extensible web-
based registry containing details on information
sources and reasoners, a portable proof
specification, and an explanation browser.

1 Introduction
Inference Web (IW) aims to enable applications that can
generate portable and distributed explanations for any of
their answers. There are many reasons that users and
agents need to understand the provenance of information
that they get back from applications. The main
motivating factors for us are interoperability, reuse, and
trust. Interoperability is essential if agents are to
collaborate. Trust and reuse of retrieval and deduction
processes is facilitated when explanations are available.
Ultimately, if users and/or agents are expected to trust
information and actions of applications and if they are
expected to use and reuse application results potentially
in combination with other information or other
application results, they may need to have access to many
kinds of information such as source, recency,
authoritativeness, method of reasoning, term meaning
and interrelationships, etc.

This work builds on experience designing explanation
components for reasoning systems [McGuinness, 1996;
McGuinness-Borgida, 1995; Borgida, et. al, 1999, and
2000] and experience designing query components for

frame-like systems [McGuinness, 1996; Borgida-
McGuinness, 1996] to generate requirements. We also
obtained requirements input from contractors in DARPA-
sponsored programs concerning knowledge-based
applications (the High Performance Knowledge Base
program1, Rapid Knowledge Formation Program2, and
the DARPA Agent Markup Language Program3 and more
recently, the ARDA AQUAINT4 and NIMD5 programs).
We also obtained requirements from literature on
explanation for expert systems, (e.g., [Swartout, et. al.,
1991]), and usability of knowledge representation
systems (e.g., [McGuinness-Patel-Schneider, 1998 and
2003]), and theorem proving explanation (e.g., [Felty-
Miller, 1987]).

Our goal is to address needs that arise with use of
systems performing reasoning and retrieval tasks in
heterogeneous environments such as the web. Users may
obtain information from individual or multiple sources
and they may need to determine which information to
trust. Users may also obtain conflicting information and
they may need additional information to help evaluate
what to believe. They may also gather information from
complex and hybrid sources and they need help
integrating answers and solutions. As web usage grows,
a broader and more distributed array of information
services are available for use and the needs for
explanations that can be shared across distributed
environments grow.

In this paper, we include a list of explanation
requirements gathered from past work and from
surveying users. We present the Inference Web
architecture and provide a description of the major IW
components including the portable proof specification,
the registry (containing information about inference
engines, proof methods, and ontologies), and the
justification browser. We also provide some simple

1 http://reliant.teknowledge.com/HPKB/
2 http://reliant.teknowledge.com/RKF/
3 http://www.daml.org
4 http://www.ic-arda.org/InfoExploit/aquaint/
5 http://www.ic-arda.org/Novel_Intelligence/

Inference Web: Portable Explanations for the Web

 Deborah L. McGuinness and Paulo Pinheiro da Silva
 Knowledge Systems Laboratory

 Stanford University

usage examples. We conclude with a discussion of our
work in the context of explanation work and state our
contributions in the areas of application interoperability,
reuse, and trust.

2 Requirements
If humans and agents need to make informed decisions
about when and how to use answers from applications,
there are many things to consider. Decisions will be
based on the quality of the source information, the
suitability and quality of the reasoning engine, and the
context of the situation. Particularly for use on the web,
information needs to be available in a distributed
environment and needs to be interoperable across
applications.
First, we consider issues concerning the source
information. Even when search engines or databases
simply retrieve asserted or “told” information, users (and
agents) may need to understand where the source
information came from at varying degrees of detail. This
information sometimes called provenance, may be
viewed as meta information about told information.
Provenance information may include:
• Source name (e.g., CIA World Fact Book)
• Date and author(s) of last update
• Author(s) of original information
• Authoritativeness of the source (is this knowledge

store considered or certified as reliable by a third
party?)

• Degree of belief
• Degree of completeness (Within a particular scope, is

the source considered complete. For example, does
this source have all of the employees of a particular
organization up until a some date? If so, not finding
a particular employee would mean that they are not
employed, counting employees would be an accurate
response to number of employees, etc.)

The information above could be handled with meta
information about content sources and about individual
assertions. Additional types of information may be
required if users need to understand the meaning of terms
or implications of query answers. If applications make
deductions or otherwise manipulate information, users
may need to understand how deductions were made and
what manipulations were done. Information concerning
derived or manipulated information may include:
• Term or phrase meaning (in natural language or a

formal language)
• Term inter-relationships (ontological relations

including subclass, superclass, part-of, etc.)
• The source of derived information (reasoner used,

reasoner method, reasoner inference rule, etc.)
• Reasoner description (is the reasoner used known to be

sound and complete?)
• Term uniqueness (is J. Smith the same individual as

John Smith?)

• Term coherence (is a particular definition incoherent?)
• Source consistency (is there support in a system for

both A and ~A)
• Were assumptions used in a derivation? If so, have the

assumptions changed?

3 Use Cases

Every combination of a query language with a query-
answering environment is a potential new context for the
Inference Web. We provide two motivating scenarios.

Consider the situation where someone has analyzed a
situation previously and wants to retrieve this analysis. In
order to present the findings, the analyst may need to defend
the conclusions by exposing the reasoning path used along
with the source of the information. In order for the analyst
to reuse the previous work, s/he will also need to decide if
the source information used previously is still valid (and
possibly if the reasoning path is still valid).

Another simple motivating example arises when a user asks
for information from a web application and then needs to
decide whether to act on the information. For example, a
user might use a search engine interface or a query language
such as DQL6 for retrieving information such as “zinfandels
from Napa Valley” or “wine recommended for serving with
a spicy red meat meal” (as exemplified in the wine agent
example in the OWL guide document[Smith et. al., 2003]).
A user might ask for an explanation of why the particular
wines were recommended as well as why any particular
property of the wine was recommended (like flavor, body,
color, etc.). The user may also want information concerning
whose recommendations these were (a wine store trying to
move its inventory, a wine writer, etc.).

In order for this scenario to be operationalized, we need to
have the following:

• A way for applications (reasoners, retrieval engines, etc.)
to dump justifications for their answers in a format that
others can understand. To solve this problem we
introduce a portable proof specification.

• A place for receiving, storing, manipulating, annotating,
comparing, and returning meta information used to
enrich proofs and proof fragments. To address this
requirement, we introduce the Inference Web Registry
for storing the meta information and the Inference Web
Registrar web application for handling the Registry.

• A way to present justifications to the user. As one
solution to this problem, we introduce a proof browser.

4 Inference Web

We begin with a short description of different categories of
Inference Web users. These users along with the usage

6 http://www.daml.org/2002/08/dql/.

examples above motivate the main components of Inference
Web: portable proofs and their parsers, registry and its
registrar, and proof browsers.

The prime users of inference web are:

• Application developers (authors of reasoners, search
engines, database systems, etc.) who would like to
justify why their answers to queries should be believed
or who would like to state under what conditions their
systems are best used. These people are interested in
allowing their system to not only answer queries but
also provide meta information about the answer. The
portable proof specification in Inference Web allows
application developers to store this information in a
sharable format.

• Authors of hybrid solutions programs interested in
combining multiple answering systems and/or
knowledge bases. These people need to understand
how terms relate to each other and how answers were
derived and might be integrated. Examples of such
people include ontology builders who are merging
ontologies or extending ontologies, crawler or wrapper
authors, people combining databases or knowledge
based systems, etc. The registry in Inference Web
provides a store of information about inference
methods, inference engines, ontologies, and sources
that helps address these issues.

• Humans or agents needing to decide if they can trust
either retrieved information or inference processes used
to retrieve information. The browser in inference web
addresses these issues by allowing users to view partial
or complete justifications for answers.

Inference Web contains both data used for proof generation
and presentation and tools for building, maintaining,
presenting, and manipulating proofs. Inference Web data
includes proofs and proof fragments published anywhere on
the web. Inference Web data also includes a centralized
repository of meta-data including sources, inference
engines, inference rules and ontologies. Inference Web tools
include a registrar for interacting with the registry, a parser
for proof I/O, a browser for displaying proofs, and planned
future tools such as proof web-search engines, proof
verifiers (possibly utilizing tools such as Specware, etc). In
this paper, we limit our discussion to the portable proofs
(and an associated parser), the registry (and the associated
registrar tools), and the browser.

4.1 Portable Proofs

Systems that may be asked to return a justification for an
answer along with an answer need to expose provenance
information along with their deductive process possibly
including meta information about the system itself. We
provide a specification written in the web markup language
DAML+OIL [Connolly et. al., 2001]. Proofs dumped in the
portable proof format become a portion of the Inference
Web data used for presenting proofs. Our portable proof
specification includes four major components of IW proof
trees: inference rules, inference steps, well formed formulae

(WFFs), and referenced ontologies. Inference rules (such as
modus ponens) can be used to deduce a consequent (a well
formed formula) from any number of antecedents (also well
formed formulae). An inference step is a single application
of an inference rule. The inference step will be associated
with the consequent WFF and it will contain pointers to the
antecedent WFFs, the inference rule used, and any variable
bindings used in the inference rule application. The
antecedent WFFs may come from other inference steps,
existing ontologies, extraction from documents, or they may
be assumptions. Figure 1 presents a typical dump of a WFF.
<?xml version='1.0'?> <rdf:RDF ���>
<iw:WFF>

 <iw:WFFContent> ��������	�	
�����	���������
�������

��������������������������������������	�
����
 <daml:List rdf:about='IW/spec/fopl.daml#Claus e'>
 <daml:first>
 <fopl:Negated-Predicate-Of-Terms
 fopl:SymbolName='holds'>
 <fopl:hasArgumentList
rdf:parseType='daml:collection'>
 <iw:Constant>
<fopl:SymbolName>type</fopl:SymbolName> </iw:Consta nt>
 <fopl:Variable fopl:SymbolName='?inst'/ >

 ������������������������������������
 </daml:List>
 </iw:WFFContent>
 <iw:isConsequentOf rdf:parseType='daml:collecti on'>

�����������������������		����
��
����	
�����������	
�	�
 <iw:InferenceStep> �
 <iw:hasInferenceRule
 rdf:parseType='daml:collection'>
 <iw:InferenceRule
 rdf:about='../registry/IR/GMP.daml'/>
 </iw:hasInferenceRule>
 <iw:hasInferenceEngine
 rdf:parseType='daml:collection'>
 <iw:InferenceEngine
 rdf:about='../registry/IE/JTP.daml'/>
 </iw:hasInferenceEngine>

 ����
 <iw:has Antecedent
 rdf:parseType='daml:collection'>

�����������������������	
����
���
	����������	���
��

����������������
�����������	��

 <iw:WFF rdf:about='../sample/IW3.daml'/>
 <iw:WFF rdf:about='../sample/IW4.daml'/>
 </iw:hasAntecedent>
 <iw:hasVariableMapping
rdf:type='http://www.daml.org/2001/03/daml+oil#List '/>

 ����

 </iw:InferenceStep>
 </iw:isConsequentOf>
 </iw:WFF>
</rdf:RDF>

 Figure 1. An Inference Web Proof
There we can see an instance of a WFF, an inference step,
and an inference rule. There is no ontology associated with
this WFF since it is derived. If it had been asserted, it
would require an association to the ontology that contains it.
A proof can then be defined as a tree of inference steps
explaining the process of deducing the consequent WFF. In
Inference Web, proofs are trees of proof fragments rather
than single monolithic proofs. With respect to a query, a
logical starting point for a proof in Inference Web is a proof
fragment that contains the last inference step used to derive
a WFF that is an answer for the query. Any inference step
can be presented as a stand alone, meaningful proof

fragment as it contains the inference rule used with links to
its antecedents and variable bindings. The generation of
proof fragments is a straightforward task once inference
engine data structures storing proof elements are identified
as IW components. To facilitate the generation of proofs,
the Inference Web provides a parser in Java that dumps
proofs from IW components and uploads IW components
from proofs. The development of an IW parser in LISP is
under consideration.

The IW infrastructure can automatically generate follow-up
questions for any proof fragment by asking how each
antecedent WFF was derived. The individual proof
fragments may be composed together to generate a complete
proof, i.e., a set of inference steps culminating in inference
steps containing only asserted (rather than derived)
antecedents.. When an antecedent WFF is asserted, there
are no additional follow-up questions required and that ends
the complete proof generation.

A WFF may be the consequent of any number of inference
steps. IW can be used to support multiple justifications for
any particular WFF. WFFs may not be the consequent of an
inference step if they are assumptions or merely asserted
information in an ontology that the user is referencing. The
specification of IW concepts used in Figure 1 is available at
http://www.ksl.stanford.edu/software/IW/spec.

4.2 Registry
The IW registry is currently a centralized repository of
information used to enrich explanations with details about
authoritative sources, ontologies, inference engines, and
inference rules. In the future, we may store only pointers to
registry entries published elsewhere on the web. Our
registry includes template information about each of the
classes in the registry. For example, inference engines may
have the following properties associated with them: name,
URL, author(s), date, version number, organization, etc.
The current demonstration registry is available at:
http://belo.stanford.edu:8080/iwregistry/BrowseRegistry.jsp

Information in the registry contains the information linked
to in the proofs. Every inference step should have a link to
at least one inference engine that was responsible for
instantiating the inference step itself, as shown in Figure 1.

The description of inference rules is one of the most
important features of the Registry. Registered rules can be
atomic or can be derived from other registered rules.

In order to interact with the IW Registry, there is a Registrar
web application allowing users to update or browse the
registry. A screen shot from the Registrar interface for
inference rules is included in Figure 2. This displays a
listing of the atomic inference rules for the JTP model-
elimination reasoner at Stanford. Each of the inference
rules includes a name, description, optional example, and
optional formal specification.

Many reasoners also use a set of derived rules that may be
useful for optimization, for example. One individual
reasoner may not be able to provide a proof of the derived
rules but one reasoner may point to another reasoner’s proof

of a rule. Thus, reasoner-specific rules can be explained in
the Registry before the reasoner is actually used to generate
IW proofs. Inference web thus provides a way to use one
reasoner to explain another reasoner’s inference rules. (This
was the strategy used in [Borgida et al, 1999] for example.)
This strategy may be useful for explaining heavily
optimized inference engines. Inference Web’s registry,
when fully populated, will contain inference rule sets for
many common reasoning systems. Users may view
inference rule sets to help them decide whether to use a
particular inference engine.

Figure 2: Sample Inference Web Registrar Entry

Ontologies are another component in the IW registry.
Ontologies are stores of assertions that may be used in
proofs. It can be important to be able to present information
such as ontology source, date, version, URL (for browsing),
etc. Figure 3 contains a sample ontology registry entry for
the ontology used in our wine examples.

Figure 3: Sample Inference Web Ontology Entry

4.3 Browser

Inference Web includes a browser that displays proof
fragments in a number of formats. Initially, we include
formats for restricted English, KIF7, and conjunctive normal
form. We also expect that some applications may
implement their own displays using the IW API.

The prototype browser allows a user to see an inference rule
used along with the derived sentence and the antecedent
sentences. The browser implements a lens metaphor
responsible for rendering a fixed number of levels of
inference steps depending on the lens magnitude setting.
Figure 4 presents an inference step for one wine use case in
Section 3. Prior to this view, the program has asked what
wine to serve with a spicy-red-meat course. In Figure 4, one
can see that NEW-COURSE12, which is the selected meal
course, requires a drink that has a full body since it is a
spicy red meat course. The sentences are formatted in KIF
and the lens magnitude is one, thus the browser displays the
inference step used to derive it including its antecedents. A
lens setting of two would also include the antecedent’s
derivations.

We believe that one of the keys to presentation of
justifications is breaking proofs into separable pieces. Since
we present fragments, automatic follow-up question support
is a critical function of the IW browser. Every element in
the viewing lens can trigger a browser action. The selection
of an antecedent that is derived re-focuses the lens on an
antecedent’s inference step. For other lens elements,
associated actions present Registry meta-information in the
Trust Disclosure Panel. The selection of the consequent
presents details about the inference engine used to derive the
actual theorem. The selection of an inference rule presents a
description of the rule. The selection of a sentence that is
asserted information presents details about ontologies where

7 http://logic.stanford.edu/kif/kif.html.

the axiom is defined. In Figure 4, selecting the consequent
would present information about JTP- the inference engine
used to derive it. Selecting GMP – the inference rule, would
present information about JTP’s Generalized Modus Ponens
rule. Selecting a statement such as “beef curry is a spicy red
meat” or “spicy red meat courses require full-bodied wines”
presents information about the wines ontology. Selecting a
derived or cached inference rule presents information about
the inference rule. (JTP uses a set of special purpose
axioms for more efficiently reasoning with the DAML+OIL
language and those inferences may be used in an
explanation). An example of this process can be seen from
the Inference Web web pages at:
http://www.ksl.stanford.edu/software/iw/Ex1/.

5 Related Work and Contributions

Recognition of the importance of explanation components
for reasoning systems has existed in a number of fields for
many years. For example, from the early experiences with
MYCIN[Shortliffe,1976], expert systems researchers
understood the need for systems that understood their
reasoning processes and could generate explanations in a
language understandable to its users. Inference web
attempts to stand on the shoulders of past work in expert
systems, such as MYCIN and the explainable expert system
on generating explanations using both their leanings on how
to generate explanations and interoperating with next
generation systems that generate explanations. IW also
builds on the learnings of explanation in description logics
(e.g., [McGuinness, 1996; Borgida, et.al, 2000]) that
attempts to provide a logical infrastructure for separating
pieces of logical proofs and automatically generating
follow-questions based on the logical format. It also looked
to the theorem proving community with work such as
[Felty-Miller, 1987]) that attempts to provide
understandable and flexible explanations of theorem provers
and foundational systems such as [Boyer, et. al, 1995] that
provides some explanations of deductions along with WFFs
not proven.

 Figure 4: An Inference Web Browser Screen
We are not aware of work that has attempted to provide an
infrastructure for providing, storing, and manipulating
interoperable explanations of heterogeneous reasoning
systems. Beyond just explaining a single system, Inference

Web attempts to incorporate best in class explanations and
provide a way of combining and presenting justifications
that are available. It does not take one stance on the form of
the explanation since it allows deductive engines to dump
single or multiple explanations of any deduction in
deductive language of their choice. It provides the user with
flexibility in viewing fragments of single or multiple
explanations in multiple formats. IW simply requires
inference rule registration and portable proof format.

Inference Web provides the following contributions:

• An architecture supporting interoperability between
agents using portable proofs. Portable proofs are
specified in the emerging web standard DAML+OIL so
as to leverage XML-, RDF-, and DAML-based
information services. Proof fragments as well as entire
proofs may be interchanged.

• Lightweight proof browsing using the lens-based IW
proof browser supporting either pruned justifications or
guided viewing of a complete reasoning path.

• Support for alternative justifications using multiple
inference steps. This allows derivations to be
performed by performance reasoners with explanations
being generated by alternative reasoners aimed at
human consumption.

• Registry of inference engines, ontologies, and sources.

We are currently extending the Stanford’s JTP8 theorem
prover to produce portable proofs and simultaneously
populating the IW registry with JTP information. Future
work includes expanding to include other inference engines.
We also intend to provide specialized support for why-not
questions expanding upon [Chalupsky-Russ,2002] and
[McGuinness,1996]. We are also looking at additional
support for proof browsing and pruning.

6 Conclusion

Inference web enables applications that can generate
portable explanations of their conclusions. We described
the major components of IW – the portable proof
specification based on the emerging web language-DAML
(soon to be updated to OWL), the registry, and the IW proof
browser. We facilitated use in a distributed environment by
providing IW tools for registering and manipulating proofs,
proof fragments, inference engines, ontologies, and source
information. We also facilitated interoperability by
specifying the portable proof format and providing tools for
manipulating proofs and fragments. We have implemented
the IW approach for one inference engine (JTP) and are in
discussions with additional reasoner authors to include more
reasoning engines. We have presented the work at some
government sponsored program meetings(RKF, DAML, and
AQUAINT) to gather input from other reasoner
authors/users and have obtained feedback and interest. We
are initiating additional reasoner, ontology, and source
registrations.

8 http://www.ksl.stanford.edu/software/jtp/.

Acknowledgements
Many people have provided valuable input to our work.
Thanks in particular go to colleagues at KSL including
Richard Fikes, Jessica Jenkins, Gleb Frank, Eric Hsu,
and Yulin Li for input on JTP, our specification or
applications. Also thanks go to a number of colleagues
in some government programs who provided input
including Hans Chalupsky, Peter Clark, Ken Forbus, Ken
Murray, and Steve Reed, All errors, of course are our
responsibility.

References

[Borgida et.al, 2000] Alex Borgida, Enrico Franconi, and
Ian Horrocks. Explaining ALC subsumption. In Proc. of
the 14th European Conf. on Artificial Intelligence
(ECAI'2000), pages 209-213. IOS Press, 2000.
[Borgida et al., 1999] Alex Borgida, Enrico Franconi, Ian
Horrocks, Deborah McGuinness, and Peter Patel-
Schneider. ``Explaining ALC subsumption” Proceedings
of the International Workshop on Description
Logics(DL-99), Linköping, Sweden, July 1999, pp 33-36.
[Boyer et.al, 1995] Robert Boyer, Matt Kaufmann, and J.
Moore. The Boyer-Moore Theorem Prover and Its
Interactive Enhancement, Computers and Mathematics
with Applications, 29(2), 1995, pp. 27-62.
[Chalupsky and Russ, 2002] Hans Chalupsky and Tom
Russ. WhyNot: Debugging Failed Queries in Large
Knowledge Bases. In Proceedings of the Fourteenth
Innovative Applications of Artificial Intelligence
Conference (IAAI-02), pages 870-877.
[Connolly et. al, 2001] Dan Connolly, Frank van
Harmelen, Ian Horrocks, Deborah L. McGuinness, Peter
F. Patel-Schneider, and Lynn Andrea Stein. DAML+OIL
(March 2001) Reference Description. W3C Note 18
December, 2001. http://www.w3.org/TR/daml+oil-
reference.
[Dean et. al., 2002] Mike Dean, Dan Connolly, Frank van
Harmelen, James Hendler, Ian Horrocks, Deborah
McGuinness, Peter Patel-Schneider, and Lynn Andrea
Stein. OWL Web Ontology Language 1.0 Reference.
World Wide Web Consortium (W3C) Working Draft 29
July 2002. Latest version is available at
http://www.w3.org/TR/owl-ref/.
[Felty and Miller, 1987] Amy Felty and Dale Miller.
Proof Explanation and Revision. University of Penn,
Tech. Report MSCIS8817, 1987 http://cm.bell-
labs.com/who/felty/abstracts/proof87.html.
[Fikes et al., 2002] Richard Fikes, Pat Hayes, Ian
Horrocks, editors. DAML Query Language(DQL)
Abstract Specification.
http://www.daml.org/2002/08/dql/.
[McGuinness, 1996] Deborah L. McGuinness. 1996.
Explaining Reasoning in Description Logics. Ph.D.
Thesis, Rutgers University, Technical Report LSCR-TR-
277.

[McGuinness and Borgida, 1995] Deborah L.
McGuinness and Alex Borgida. Explaining Subsumption
in Description Logics. In Proc.14th International Joint
Conf. on Artificial Intelligence, Montreal, Canada. 1995.
[McGuinness and Patel-Schneider, 2003] Deborah
McGuinness and Peter Patel-Schneider. ``From
Description Logic Provers to Knowledge Representation
Systems''. Franz Baader, Deborah McGuinness, Daniele
Nardi, and Peter Patel-Schneider, editors The Description
Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.
[McGuinness and Patel-Schneider, 1998] Deborah
McGuinness and Peter Patel-Schneider. ``Usability Issues
in Knowledge Representation Systems''. In Proceedings
of the Fifteenth National Conference on Artificial
Intelligence, Madison, Wisconsin, July, 1998. Updated
version of ``Usability Issues in Description Logic
Systems'' published in Proc. of International Workshop
on Description Logics, Gif sur Yvette, (Paris), France,
Sept, 1997.
[Shortliffe, 1976] Edward Hance Shortliffe. Computer-
Based Medical Consultations: MYCIN. Elsevier/North
Holland, New York, 1976.
[Smith et al., 2003] Michael Smith, Deborah L.
McGuinness, Raphael Volz and Chris Welty. Web
Ontology Language (OWL) Guide Version 1.0. World
Wide Web Consortium (W3C) Working Draft. Available
at http://www.w3.org/TR/owl-guide.
[Specware,2001] http://www.specware.org/
[Swartout et al., 1991] W. Swartout, C. Paris, and J.
Moore. “ Explanations in Knowledge Systems: Design for
Explainable Expert Systems”. In IEEE Intelligent
Systems, June 1991. http://www.computer.org/intelligent/
ex199/x3058abs.htm.

