
Explaining Task Processing in Cognitive Assistants That Learn

Deborah L. McGuinness1, Alyssa Glass1,2, Michael Wolverton2, and Paulo Pinheiro da Silva1,3

Stanford University1 Stanford, CA SRI International2 Menlo Park, CA University of Texas, El Paso3. El Paso, TX

 {dlm | glass}@ksl.stanford.edu

mjw@ai.sri.com paulo@utep.edu

Abstract

As personal assistant software matures and assumes more
autonomous control of user activities, it becomes more critical
that this software can explain its task processing. It must be able
to tell the user why it is doing what it is doing, and instill trust in
the user that its task knowledge reflects standard practice and is
being appropriately applied. We will describe the ICEE
(Integrated Cognitive Explanation Environment) explanation
system and its application to explaining task reasoning, Key
features include (1) an architecture designed for re-use among
different task execution systems; (2) a set of introspective
predicates and a software wrapper that extract explanation-
relevant information from a task execution system; (3) a version
of the Inference Web explainer for generating formal
justifications of task processing and converting them to user-
friendly explanations; and (4) a unified framework for explaining
results from task execution, learning, and deductive reasoning.
Our work is focused on explaining belief-desire-intention (BDI)
agent execution frameworks with the ability to learn. We
demonstrate ICEE’s application within CALO, a state-of-the-art
personal software assistant, to explain the task reasoning of one
such execution system and describe our associated trust study.

Introduction
Personalized software assistants have the potential to
support humans in everyday tasks by providing assistance
in cognitive processing. If these agents are expected to
achieve their potential and perform activities in service of
humans (and possibly other agents) then these agents need
to be fully accountable. Before their users can be expected
to rely on cognitive agents, the agents need to provide the
users with justifications for their decisions, including that
those decisions are based on appropriate processes and on
information that is accurate and current. The agents need
to be able to use these justifications to derive explanations
describing how they arrived at a recommendation,
including the ability to abstract away detail that may be
irrelevant to the user’s understanding and trust evaluation
process. Further, if the agents are to be used to perform

 Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
This work is supported by the Defense Advanced Research Agency
(DARPA) through contract #55-300000680 to-2 R2. We thank Cynthia
Chang, Vasco Furtado, Karen Myers, Jim Blythe, Ken Conley, and David
Morley for helpful collaborations and feedback on this work. This paper
is an updated version of a paper presented at the AAAI 2007 Spring
Symposium on Interaction Challenges for Intelligent Assistants.

tasks, they need to explain how and under what conditions
they will execute a task, as well as how and why that
procedure has been created or modified over time.

One significant challenge to explaining cognitive assistants
is that they, by necessity, include task processing
components that evaluate and execute tasks, as well as
reasoning components that determine conclusions. Thus, a
comprehensive explainer needs to explain task processing
responses as well as more traditional reasoning systems,
providing access to both inference and provenance
information , which we refer to as knowledge provenance
(Pinheiro da Silva, McGuinness, McCool, 2004).

Work has been done in the theorem proving community, as
well as in many specialized reasoning communities, to
explain deductions. A limited amount of work has also
been done in the task execution community. What has not
been done is work explaining task execution in a way that
is also appropriate for explaining deductive reasoning and
provenance. Our work provides a uniform approach to
representing and explaining provenance and results from
both communities, in addition to learned information.

Our design and implementation work is in the setting of
the DARPA Personalized Assistant that Learns (PAL)
program, as part of the Cognitive Assistant that Learns and
Organizes (CALO) project. The CALO system includes
work from 22 different organizations. This presents a
complex explanation challenge where CALO must explain
conclusions from multiple knowledge sources, both hand
built and automatically generated, with multiple reasoning
techniques including task processing, deduction, and
learning. In this paper, we will present our representation,
infrastructure, and solution architecture for explaining
BDI-based task processing; describe how it has been
implemented in our new Integrated Cognitive Explanation
Environment (ICEE); and show how it has been used to
explain cognitive assistants. We also discuss preliminary
results from a study of CALO users that show how
explanation can be a key component in building user trust
in cognitive assistants that learn.

Motivating Scenario
As a motivating scenario, we provide an example from the
CALO office domain. In this example, the cognitive agent
is working in the role of an office assistant, and has been

tasked with purchasing a laptop for its user. In order to
accomplish the high-level goal of buying a laptop, the
cognitive agent uses a simple three step process with a
laptop specification as input. The first subtask, GetQuotes,
requires the agent to obtain three quotes from three
different sources. The second subtask, GetApproval,
requires a particular form to be signed by an approval
organization representative. The final subtask,
SendOrderToPurchasing, requires a requisition form to be
sent to purchasing. Note that in sequential tasks such as
these, the termination condition of a previous subtask is
typically a precondition to the next subtask.

The user may ask for an explanation of the agent’s
behavior at any time. ICEE provides a dialogue interface
to explaining the agent’s actions. The user can request
explanations starting with any of several supported
explanation request types. For example, “Why are you
doing <subtask>?” is an example of an explanation request
concerning task motivation. Other task explanation
request types include execution history, plans, status, task
ordering, or explicit questions about time. ICEE also
handles extensive questions about task provenance,
including explanations about the requestor of a task and
the source of the procedure being executed by the system.
These questions have been guided by an initial study
focused on how to build user trust in cognitive agents.

ICEE contains one or more explanation strategies for each
explanation request type. Based on context such as system
status and past interactions, in addition to a model of the
user, ICEE chooses one strategy. For example, in response
to the above question, ICEE may choose the simple
strategy of revealing the task hierarchy: “I am trying to do
<high-level-task>, and <subtask> is one subgoal in the
process.” For each explanation request, ICEE can either
reuse an existing task justification, which includes a task
execution trace, or build and parse a new justification.
Then ICEE presents as explanations the portions of the
justification that are relevant to the explanation strategy.
Additionally, ICEE suggests follow-up explanation
requests for the user, enabling mixed initiative dialogue
between the agent and the user. For example, follow-up
questions in the above scenario might include:
 “Why are you doing <high-level-task>?”
 “Why haven’t you completed <subtask> yet?”
 “Why is <subtask> a subgoal of <high-level-task>?”
 “When will you finish <subtask>?”
 “What sources did you use to do <subtask>?”

The ICEE System

Architecture Overview
The architecture of ICEE is designed to be flexible and
allow explanations to be derived from justifications
gathered seamlessly from a variety of task processing and

knowledge systems. An explanation dispatcher gathers
structured explanation requests from the user through a
collaboration agent or user interface. The assistant’s user
interface provides specialized mechanisms for users to
request explanations.

Based on the type of the explanation request, the
explanation dispatcher determines which explainer will
handle the request, and forwards it to the proper explainer
component. For questions related to task processing, the
Task Manager (TM) explainer handles the request. The
TM explainer instructs the TM wrapper to gather task
processing information about the requested tasks. The TM
wrapper is closely coupled with a BDI execution system,
or task manager. We have provided a TM wrapper for the
task execution system used in CALO, which is based on
the SRI Procedural Agent Realization Kit (SPARK);
however, any similar task execution system could be
similarly enhanced with explanation capabilities.

The TM wrapper stores the gathered task processing
information in the task state database. This database is
then used by the justification generator to create a
justification for the tasks currently under execution,
including any additional processing that is related to the
current tasks. The generated justification can then be used
by the TM strategies to create alternative explanations and
select the one most salient to the user’s questions. The
explanation dispatcher returns the selected explanation to
the collaboration agent for appropriate display to the user.
Each of these architectural components is discussed below.

Task Oriented Processing
 Complex cognitive agents must have a mechanism for
representing and executing tasks. A belief-desire-intention
(BDI) model (Rao & Georgeff, 1995) is a common
framework for task reasoning components. BDI systems
cover a range of execution capabilities, including
hierarchical task encoding, control of procedural agent
behavior, sequential and parallel execution of sub-
procedures, conditional execution, branching, flexible
preconditions, and meta-level reasoning to determine
applicable procedures.

Task management in CALO is provided by SPARK
(Morley & Myers 2004), a BDI agent framework, which
maintains procedures that define agent actions. The CALO
Task Manager’s knowledge base includes human-authored
procedures along with procedures that were partially or
completely learned based on evolving information. ICEE
gathers information on both static aspects of procedures
within SPARK as well as dynamic information about its
past and current execution state.

Introspective Predicates
ICEE is designed to provide cognitive agent users with the
ability to ask detailed questions about task execution and
to engage in a mixed initiative dialogue about past, current,

and future task execution. To provide detailed explanations
of task processing system behavior, justifications are
annotated with meta-data. In order to generate detailed
explanations, the task execution system must be able to
expose this meta-information. One of our contributions is
a specification of a set of introspective predicates that
were designed to provide access to meta-information
required for explainable task processors. These
introspective predicates fall into three categories:

1. Basic Procedure Information: relatively stable,
static information that is not dependant on when a
task is executed. Provenance information about
how task definitions have been created or learned is
a key aspect of these introspective predicates.

2. Execution Information: dynamic information that is
generated as a task begins being executed, and
remains valid in some form throughout the
execution of that task. This information also
includes history related to completed tasks.

3. Projection Information: information about future
execution, as well as alternatives for decision points
that have already passed.

A task execution system that provides access to this set of
introspective predicates can be linked to ICEE and allow it
to fully explain all the question types and strategies
described above. Details on the introspective predicates
can be found in (Glass & McGuinness 2006).

Wrapper, Action Schema and Action Database
In order to collect explanation-relevant information from
the task execution agent and store it in a format
understandable by the explainer, we designed and built a
wrapper for SPARK and an intermediate action schema in
which to record task execution information. These
elements were designed to achieve three criteria:
• Salience. The wrapper should obtain information about

an agent’s processing that is likely to address some
possible user information needs.

• Reusability. The wrapper should obtain information that
is also useful in other cognitive agent activities that
require reasoning about action—for example, state
estimation and procedure learning.

• Generality. The schema should represent action
information in as general a way as possible, covering the
action reasoning of blackboard systems, production
systems, and other agent architectures.

The wrapper collects a snapshot of SPARK’s current state
as well as the previous decisions that led to that state. It
uses SPARK’s expanded introspective predicates to extract
the portions of its underlying intention structure relevant to
its current intentions, building this structure by recursively
querying for the supporting elements of intentions and
procedures. Example queries include: What are the current
intentions? What is the procedure instance that led to
intention X? What are the preconditions that were met
before procedure P could be executed?

After collecting the snapshot, the wrapper stores it in a
SPARK-independent task execution action database. This
schema reflects that most task execution systems share the
same common structure. While the current terminology in
our schema is consistent with SPARK’s, the concepts are
general and consistent with other cognitive architectures.
For example, “procedures” in our schema are equivalent to
“knowledge sources” in BB* and other blackboard
architectures, “procedure instances” are equivalent to
“Knowledge Source Activation Records (KSARs)”, etc.
(Hayes-Roth 1985). The database records the relationships
between key entities relevant to the agent’s current state,
for example, which intentions were established by which
procedure instances, which procedure a given procedure
instance instantiates, and which of a procedure’s
termination conditions were satisfied and which were not.

We achieve multiple design goals by creating a system-
specific wrapper and a generic action schema. When new
task execution systems (other than SPARK) need to be
explained, the generic action schema is reused and only a
new wrapper is needed. .No changes are required to the
justification representation or the explanation strategies.
Also, the action schema can be reused by other cognitive
agent components for purposes beyond explanation, such
as state capture, archiving, or snapshotting.

Generating Formal Justifications
A cognitive agent’s actions should be supported by
justifications that are used to derive and present
understandable explanations to end-users. These
justifications need to reflect both how the actions support
various user goals, and how the particular actions chosen
by the agent were guided by the state of the world. More
specifically, our approach to task justification breaks down
the justification of a question about a particular task T into
three complementary strategies, described here using
terminology from SPARK:
• Relevance: Demonstrate that fulfilling T will further one

of the agent’s high-level goals, which the user already
knows about and accepts

• Applicability: Demonstrate that the conditions necessary
to start T were met at the time T started (possibly
including the conditions that led T to be preferred over
alternative tasks)

• Termination: Demonstrate whether one or more of the
conditions necessary to terminate T has not been met.

This three-strategy approach contrasts with previous
approaches to explanation, most of which dealt with
explaining inference (Scott et al. 1984, Wick & Thompson
1992). Previous approaches generally have not dealt with
termination issues, and they also generally have not
distinguished between relevance and applicability
conditions. These are critical aspects of task processing
and thus are important new issues for explanation.

Justifications can be seen and represented as proofs of how
information was manipulated to come to a particular

conclusion. We chose to leverage the Inference Web
infrastructure (McGuinness & Pinheiro da Silva, 2004) for
providing explanations. Inference Web was designed to
provide a set of components for representing, generating,
manipulating, summarizing, searching, and presenting
explanations for answers from question answering agents.
At Inference Web’s core is an Interlingua for representing
provenance, justification, and trust encodings called the
Proof Markup Language (PML) (Pinheiro da Silva,
McGuinness, & Fikes, 2006). PML provides core
representational constructs for provenance, information
manipulation steps, and trust. Inference Web also provides
PML tools for interactive browsing, summarization,
validating, and searching (McGuinness, et al, 2006). In
this work, we expanded the inference web infrastructure
and underlying components to provide support for
explaining task execution systems and learning.

PML documents contain encodings of behavior
justifications using PML node sets. An OWL
(McGuinness & van Harmelen 2004) specification of all
PML terms is available, which separates out provenance1,
justifications2, and trust3. PML node sets are the main
components of OWL documents describing justifications
for application answers published on the Web. Each node
set represents a step in a proof whose conclusion is
justified by any of a set of inference steps associated with a
node set. A task execution justification is always a
justification of why an agent is executing a given task T.
The final conclusion of the justification is a FOL sentence
saying that T is currently being executed. There are three
antecedents for this final conclusion, corresponding to the
three strategies discussed above. Each antecedent is
supported by a justification fragment based on additional
introspective predicates.

It is important to note that all the task processing
justifications share a common structure that is rich enough
to encode provenance information needed to answer the
explanation requests identified so far. By inspecting the
execution state via introspective predicates, explanation
components can gather enough provenance information to
support a wide range of explanations.

Producing Explanations
Different users may need different types of explanations.
In order to personalize explanations, ICEE uses
explanation strategies. An explanation strategy provides a
method for retrieving provenance and inference
information from justifications, selecting the information
relevant to the request, and presenting the information to
the user. Given the wide range of questions that a user
might want to ask, we conducted a study which helped us
to identify which questions users would find more

1 http://iw.stanford.edu/2006/06/pml-provenance.owl
2 http://iw.stanford.edu/2006/06/pml-justification.owl
3 http://iw.stanford.edu/2006/06/pml-trust.owl

immediately helpful in their daily interactions with a
system like CALO. The feedback from these users
motivates our choice of supported explanation and follow-
up strategies, as discussed in the next section.

User modeling and strategy selection are handled by the
explanation dispatcher. Currently, user modeling is
restricted to user preferences. Additional approaches
based on user interaction and machine learning techniques
are under investigation. The explanation strategies are
closely tied to the explanation request types discussed
above. In the example scenario presented earlier, the user
asked a question about subtask motivation, and the
explanation used a strategy of revealing task hierarchy.
Other strategies include exposing preconditions or
termination conditions, revealing meta-information about
task dependencies, or explaining provenance information
related to task preconditions or other task knowledge.

ICEE also provides context-dependent follow-up questions
for the user. Follow-up questions might include requests
for additional detail, clarifying questions about the
explanation that has been provided, or questions
essentially requesting that an alternate strategy be used to
answer the original question. Figure 1 shows an example
user interface linked to ICEE, in which a list of currently
executing tasks is provided to the user. The user has
requested an explanation of the motivation for a subtask of
the first task, and an explanation is provided along with
three suggested follow-up questions.

Establishing Trust in Cognitive Agents
To evaluate the use and effect of explanation in cognitive
agents, we conducted a preliminary trust study among a set
of CALO users. We studied 10 users from SRI
International who performed a variety of tasks with
individual CALO agents over approximately two weeks.
The users spanned a wide range of ages, backgrounds, and
prior experience with CALO. Participants were informed
before the study that they would be interviewed about
system trust and understanding. We then interviewed each
of the users, following a structured script of questions with
both free-form and rank-based answers. We had two
primary aims for this study: first, to identify what factors
users believe influence their trust in a complex cognitive
agent; and second, to identify which types of questions, if
any, users would like to ask a cognitive assistant to better
understand its answers.

Preliminary results from this study show that
understanding system decisions, including any unexpected
decisions (e.g., inconsistencies), and thus establishing trust
in a system as complex as CALO, requires a multi-pronged
approach. While trust in any system generally requires a
series of positive interactions over an extended period of
time, the complexity and constant change of an adaptive

agent presents additional issues. Many users identified
two key factors that would aid in building trust.

The first factor is transparency. Regardless of their
familiarity with the system or their technical background,
most users were leery of the opaqueness of the system.
When actions were taken by the system for which the
underlying computational reasoning was not apparent, the
users mistrusted the results. Even when results appeared
reasonable, they sought to verify the results rather than
trusting them outright, fearful that a result may be
anecdotal or based on inappropriate information. These
users identified explanations of system behavior, providing
transparency into its reasoning and execution, as a key way
of understanding answers and thus establishing trust.

The second factor is provenance. Many users commented
that, when presented with a result in CALO, they did not
know whether they could trust the result because they did
not know what source information was used by the system.
These users reported that explanations of source
provenance would enable them to trust results without the
need for much, if any, further verification.

Previous work on building trust recommendations
(McGuinness et al. 2006) has shown the complexity of
understanding the notion of trust, and how explanation of
deductive reasoning can help users to establish and build
trust. We believe that explanation of task execution in
cognitive agents, particularly in the presence of learned
behaviors, can similarly be key to helping users to build
trust. We are continuing to evaluate the results of our trust
study, and plan to use the results to guide our future work.

Related Work and Discussion
There has been an abundance of work in explaining expert
systems and, to a lesser extent, explaining automated
reasoning systems. Most of these have focused on some
notion of explaining the deductive trace of declarative
rules. Previous work on Inference Web and related work
explaining hybrid reasoners added to the field by focusing
on settings that are web-based or distributed. Our current

work further expands the coverage to support explanations
of task executions in the presence of learned knowledge,
declarative rule processing, and provenance.

Figure 1: An example explanation dialogue, with
suggested follow-up questions.

The literature on automated explanation research that
explicitly addresses explaining actions is sparse. (Johnson
1994) presents a module to explain a Soar agent’s actions
by reconstructing the context in which action decisions
were made, and then tweaking that context (hypothetically)
to discover the elements of the context that were critical to
the decision. While Johnson’s approach does have some
similarities with the way we handle gating conditions, it
does not deal with relevance and termination strategies that
are important to our agent explanation module. Earlier,
(Schulman and Hayes-Roth 1988) developed a BB1
module that explains actions using the architecture’s
control plan, but it does not address explaining when the
control plan does not exist, as is the case in CALO and
most other intelligent architectures. Work on plan
description (Mellish & Evans 1989, Young 1999, Myers
2006) has focused on summarizing an agent’s aggregate
behavior, rather than justifying individual task choices.
Our work thus fills an important gap in explaining agent
actions, providing fine-grained explanations of a wide
range of agent activities, taking into account more aspects
of BDI agent architectures, while using an approach that is
compatible with explaining hybrid reasoning components,
such as standard FOL reasoners. One promising area of
future work would be to allow the user to switch between
coarse-grained and fine-grained explanations of agent
activity, combining our work with the previous approach.

Driven by the needs of explaining cognitive assistants, we
have focused on explanation infrastructures that can work
with task execution systems as well as with deductive
reasoners and learning components. We have described
current progress on designing and implementing an
extensible and flexible architecture that is capable of
explaining the breadth required by cognitive assistants. We
began our work by producing an enumeration and
categorization of classes of cognitive assistant
explanations, which was further motivated and refined
using the initial results of our trust study. We also
analyzed the existing execution environment to identify the
actions taken that would need to be explained, leading to a
characterization of the SPARK execution environment.
We believe that this characterization is representative not
just of SPARK, but also of other agent architectures, most
notably BDI-based agents and blackboard-based systems.
The above characterization is integrated with an
explanation architecture capable of explaining standard
reasoners and hybrid theorem proving environments, an
approach we are further testing as part of a new system,
funded by the DARPA Integrated Learning program (IL
2006).

Our architecture and implementation demonstrates that an
explanation mechanism initially designed for explaining
deductive reasoning can also be successfully applied to

explaining task-oriented reasoning. We developed a three
strategy approach to explaining task execution including
relevance, applicability, and termination. Additionally,
work devoted simply to explaining task execution has not
traditionally focused on explaining a broader setting
including deduction and provenance. We developed a
framework for extracting and representing the state and
history of a task system’s reasoning, a framework that is
already proving to be useful for building trust and
explanation services in other agent activities.

ICEE includes initial implementations of all of the
described components, and is seeded with a limited
number of strategies, as prioritized by our trust study.
Current work includes expanding these components to
provide advanced functionality; additional capabilities for
handling the results of procedure learning (from instruction
and demonstration) that extend and/or update the
procedures that the task execution system uses; as well as a
strong focus on explaining conflicts, explaining failures,
and further explaining knowledge provenance.

Conclusions
If cognitive agents are to achieve their potential as trusted
assistants, they must be able to explain their actions and
recommendations. In this paper, we presented our
explanation infrastructure and described our
implementation for the CALO cognitive assistant. While
we focused here on explaining the core task processing
component, our solution provides a uniform way of
encoding task execution, deductive reasoning, and learning
components as justifications. The approach is integrated
with the Inference Web infrastructure for supporting
knowledge provenance so that these explanations may be
augmented with source information, improving end-user
understanding. Further evaluation has demonstrated that a
better understanding of answers is a key factor for users to
establish trust in cognitive assistants. The primary
contributions of this paper are (1) the design and reference
implementation of a general and reusable explanation
infrastructure for cognitive assistants that integrate task
processing, deductive reasoning, and learning; and (2) a
supporting design describing the necessary information for
explaining task processing in changing environments
(including the specification of the relevance, applicability,
termination strategy, and the categorization of explanation
requests and follow-up strategies), with a focus on
changing environments, such as those being updated by
learners.

References
CALO, 2006. http://www.ai.sri.com/project/CALO
Glass, A. and McGuinness, D.L. 2006. Introspective Predicates
for Explaining Task Execution in CALO, Technical Report,
KSL-06-04, Knowledge Systems, AI Lab., Stanford Univ.

Hayes-Roth, B. 1985. A Blackboard Architecture for Control.
Artificial Intelligence 26(3):251-321.

Integrated Learning, 2006. www.darpa.mil/ipto/programs/il/
Johnson, W. 1994. Agents that Explain Their Own Actions. 4th
Conference on Computer Generated Forces and Behavioral
Representation.

McGuinness, D. L., Pinheiro da Silva, P. 2004. Explaining
Answers from the Semantic Web: The Inference Web Approach.
Journal of Web Semantics. 1(4), 397-413. http://iw.stanford.edu

McGuinness D.L., van Harmelen F. 2004. OWL Web Ontology
Language Overview, Technical Report, World Wide Web
Consortium (W3C), February. Recommendation.

McGuinness, D.L., Ding, L., Glass, A., Chang, C., Zeng, H., and
Furtado, V. Explanation Interfaces for the Semantic Web: Issues
and Models. Proceedings of the 3rd International Semantic Web
User Interaction Workshop (SWUI'06). Athens, Georgia,
November, 2006.

McGuinness, D.L., Zeng, H., Pinheiro da Silva, P., Ding, L.,
Narayanan, D., and Bhaowal, M. 2006. Investigations into
Trust for Collaborative Information Repositories: A Wikipedia
Case Study. WWW2006 Workshop on the Models of Trust for
the Web (MTW’06), Edinburgh, Scotland.

Mellish, C. and Evans, R. 1989. Natural Language Generation
from Plans. Computational Linguistics, 15(4).

Morley, D. and Myers, K. 2004. The SPARK Agent Framework.
3rd International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS-04), New York, NY: 712-719.

Myers, K. 2006. Metatheoretic Plan Summarization and
Comparison. International Conference on Automated Planning
and Scheduling (ICAPS-06).

PAL, 2006. http://www.darpa.mil/ipto/programs/pal/
Pinheiro da Silva P., McGuinness D. L., Fikes R.. A Proof
Markup Language for Semantic Web Services, Information
Systems, Volume 31, Issues 4-5, June-July 2006, pp 381-395.
Also, Stanford Technical Report, KSL-04-01.

Pinheiro da Silva, P, McGuinness, D., McCool, R. 2003.
Knowledge Provenance Infrastructure. IEEE Data Engineering
Bulletin 26(4), pp. 26-32.

Rao, A.S. and Georgeff, M.P. 1995. BDI Agents: From Theory
to Practice. Proceedings of the First International Conference
on Multiagent Systems, San Francisco, CA.

Schulman, R. and Hayes-Roth, B. 1988. Plan-Based Construction
of Strategic Explanations, Technical Report, KSL-88-23,
Knowledge Systems Lab., Stanford Univ.

Scott, A., Clancey, W., Davis, R., and Shortliffe, E. 1984.
Methods for Generating Explanations. In Buchanan and
Shortliffe, (eds.), Rule-Based Expert Systems, Addison-Wesley.

Wick, M. and Thompson, W. 1992. Reconstructive Expert
System Explanation. Artificial Intelligence 54(1-2): 33-70.

Young, R. 1999. Using Grice’s Maxim of Quantity to Select the
Content of Plan Descriptions. Artificial Intelligence 115(2).

