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Abstract 

As personal assistant software matures and assumes more 
autonomous control of user activities, it becomes more critical 
that this software can explain its task processing. It must be able 
to tell the user why it is doing what it is doing, and instill trust in 
the user that its task knowledge reflects standard practice and is 
being appropriately applied. We will describe the ICEE 
(Integrated Cognitive Explanation Environment) explanation 
system and its application to explaining task reasoning, Key 
features include (1) an architecture designed for re-use among 
different task execution systems; (2) a set of introspective 
predicates and a software wrapper that extract explanation-
relevant information from a task execution system; (3) a version 
of the Inference Web explainer for generating formal 
justifications of task processing and converting them to user-
friendly explanations; and (4) a unified framework for explaining 
results from task execution, learning, and deductive reasoning.  
Our work is focused on explaining belief-desire-intention (BDI) 
agent execution frameworks with the ability to learn.  We 
demonstrate ICEE’s application within CALO, a state-of-the-art 
personal software assistant, to explain the task reasoning of one 
such execution system and describe our associated trust study. 

Introduction 
Personalized software assistants have the potential to 
support humans in everyday tasks by providing assistance 
in cognitive processing.   If these agents are expected to 
achieve their potential and perform activities in service of 
humans (and possibly other agents) then these agents need 
to be fully accountable. Before their users can be expected 
to rely on cognitive agents, the agents need to provide the 
users with justifications for their decisions, including that 
those decisions are based on appropriate processes and on 
information that is accurate and current.  The agents need 
to be able to use these justifications to derive explanations 
describing how they arrived at a recommendation, 
including the ability to abstract away detail that may be 
irrelevant to the user’s understanding and trust evaluation 
process. Further, if the agents are to be used to perform 
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tasks, they need to explain how and under what conditions 
they will execute a task, as well as how and why that 
procedure has been created or modified over time. 
 
One significant challenge to explaining cognitive assistants 
is that they, by necessity, include task processing 
components that evaluate and execute tasks, as well as 
reasoning components that determine conclusions.  Thus, a 
comprehensive explainer needs to explain task processing 
responses as well as more traditional reasoning systems, 
providing access to both inference and provenance 
information , which we refer to as knowledge provenance 
(Pinheiro da Silva, McGuinness, McCool, 2004).  
 
Work has been done in the theorem proving community, as 
well as in many specialized reasoning communities, to 
explain deductions.  A limited amount of work has also 
been done in the task execution community.  What has not 
been done is work explaining task execution in a way that 
is also appropriate for explaining deductive reasoning and 
provenance. Our work provides a uniform approach to 
representing and explaining provenance and results from 
both communities, in addition to learned information.  
  
Our design and implementation work is in the setting of 
the DARPA Personalized Assistant that Learns (PAL) 
program, as part of the Cognitive Assistant that Learns and 
Organizes (CALO) project.  The CALO system includes 
work from 22 different organizations.  This presents a 
complex explanation challenge where CALO must explain 
conclusions from multiple knowledge sources, both hand 
built and automatically generated, with multiple reasoning 
techniques including task processing, deduction, and 
learning.  In this paper, we will present our representation, 
infrastructure, and solution architecture for explaining 
BDI-based task processing; describe how it has been 
implemented in our new Integrated Cognitive Explanation 
Environment (ICEE); and show how it has been used to 
explain cognitive assistants.  We also discuss preliminary 
results from a study of CALO users that show how 
explanation can be a key component in building user trust 
in cognitive assistants that learn. 

Motivating Scenario 
As a motivating scenario, we provide an example from the 
CALO office domain.  In this example, the cognitive agent 
is working in the role of an office assistant, and has been 



tasked with purchasing a laptop for its user.  In order to 
accomplish the high-level goal of buying a laptop, the 
cognitive agent uses a simple three step process with a 
laptop specification as input.  The first subtask, GetQuotes, 
requires the agent to obtain three quotes from three 
different sources. The second subtask, GetApproval, 
requires a particular form to be signed by an approval 
organization representative.  The final subtask, 
SendOrderToPurchasing, requires a requisition form to be 
sent to purchasing.  Note that in sequential tasks such as 
these, the termination condition of a previous subtask is 
typically a precondition to the next subtask. 
 
The user may ask for an explanation of the agent’s 
behavior at any time.  ICEE provides a dialogue interface 
to explaining the agent’s actions.  The user can request 
explanations starting with any of several supported 
explanation request types.  For example, “Why are you 
doing <subtask>?” is an example of an explanation request 
concerning task motivation.  Other task explanation 
request types include execution history, plans, status, task 
ordering, or explicit questions about time.  ICEE also 
handles extensive questions about task provenance, 
including explanations about the requestor of a task and 
the source of the procedure being executed by the system.  
These questions have been guided by an initial study 
focused on how to build user trust in cognitive agents. 
 
ICEE contains one or more explanation strategies for each 
explanation request type.  Based on context such as system 
status and past interactions, in addition to a model of the 
user, ICEE chooses one strategy. For example, in response 
to the above question, ICEE may choose the simple 
strategy of revealing the task hierarchy:  “I am trying to do 
<high-level-task>, and <subtask> is one subgoal in the 
process.”  For each explanation request, ICEE can either 
reuse an existing task justification, which includes a task 
execution trace, or build and parse a new justification. 
Then ICEE presents as explanations the portions of the 
justification that are relevant to the explanation strategy.  
Additionally, ICEE suggests follow-up explanation 
requests for the user, enabling mixed initiative dialogue 
between the agent and the user.  For example, follow-up 
questions in the above scenario might include: 
  “Why are you doing <high-level-task>?” 
  “Why haven’t you completed <subtask> yet?” 
  “Why is <subtask> a subgoal of <high-level-task>?” 
  “When will you finish <subtask>?” 
  “What sources did you use to do <subtask>?” 

The ICEE System 

Architecture Overview 
The architecture of ICEE is designed to be flexible and 
allow explanations to be derived from justifications 
gathered seamlessly from a variety of task processing and 

knowledge systems.  An explanation dispatcher gathers 
structured explanation requests from the user through a 
collaboration agent or user interface. The assistant’s user 
interface provides specialized mechanisms for users to 
request explanations. 
 
Based on the type of the explanation request, the 
explanation dispatcher determines which explainer will 
handle the request, and forwards it to the proper explainer 
component.  For questions related to task processing, the 
Task Manager (TM) explainer handles the request.  The 
TM explainer instructs the TM wrapper to gather task 
processing information about the requested tasks.  The TM 
wrapper is closely coupled with a BDI execution system, 
or task manager.  We have provided a TM wrapper for the 
task execution system used in CALO, which is based on 
the SRI Procedural Agent Realization Kit (SPARK); 
however, any similar task execution system could be 
similarly enhanced with explanation capabilities. 
 
The TM wrapper stores the gathered task processing 
information in the task state database.  This database is 
then used by the justification generator to create a 
justification for the tasks currently under execution, 
including any additional processing that is related to the 
current tasks.  The generated justification can then be used 
by the TM strategies to create alternative explanations and 
select the one most salient to the user’s questions.  The 
explanation dispatcher returns the selected explanation to 
the collaboration agent for appropriate display to the user.  
Each of these architectural components is discussed below. 

Task Oriented Processing 
 Complex cognitive agents must have a mechanism for 
representing and executing tasks.  A belief-desire-intention 
(BDI) model (Rao & Georgeff, 1995) is a common 
framework for task reasoning components.  BDI systems 
cover a range of execution capabilities, including 
hierarchical task encoding, control of procedural agent 
behavior, sequential and parallel execution of sub-
procedures, conditional execution, branching, flexible 
preconditions, and meta-level reasoning to determine 
applicable procedures. 
 
Task management in CALO is provided by SPARK 
(Morley & Myers 2004), a BDI agent framework, which 
maintains procedures that define agent actions. The CALO 
Task Manager’s knowledge base includes human-authored 
procedures along with procedures that were partially or 
completely learned based on evolving information.  ICEE 
gathers information on both static aspects of procedures 
within SPARK as well as dynamic information about its 
past and current execution state.  
 
Introspective Predicates 
ICEE is designed to provide cognitive agent users with the 
ability to ask detailed questions about task execution and 
to engage in a mixed initiative dialogue about past, current, 



and future task execution. To provide detailed explanations 
of task processing system behavior, justifications are 
annotated with meta-data.  In order to generate detailed 
explanations, the task execution system must be able to 
expose this meta-information.  One of our contributions is 
a specification of a set of introspective predicates that 
were designed to provide access to meta-information 
required for explainable task processors. These 
introspective predicates fall into three categories: 

1. Basic Procedure Information: relatively stable, 
static information that is not dependant on when a 
task is executed.  Provenance information about 
how task definitions have been created or learned is 
a key aspect of these introspective predicates. 

2. Execution Information: dynamic information that is 
generated as a task begins being executed, and 
remains valid in some form throughout the 
execution of that task. This information also 
includes history related to completed tasks. 

3. Projection Information: information about future 
execution, as well as alternatives for decision points 
that have already passed. 

A task execution system that provides access to this set of 
introspective predicates can be linked to ICEE and allow it 
to fully explain all the question types and strategies 
described above.  Details on the introspective predicates 
can be found in (Glass & McGuinness 2006). 

Wrapper, Action Schema and Action Database 
In order to collect explanation-relevant information from 
the task execution agent and store it in a format 
understandable by the explainer, we designed and built a 
wrapper for SPARK and an intermediate action schema in 
which to record task execution information. These 
elements were designed to achieve three criteria: 
• Salience. The wrapper should obtain information about 

an agent’s processing that is likely to address some 
possible user information needs. 

• Reusability. The wrapper should obtain information that 
is also useful in other cognitive agent activities that 
require reasoning about action—for example, state 
estimation and procedure learning. 

• Generality. The schema should represent action 
information in as general a way as possible, covering the 
action reasoning of blackboard systems, production 
systems, and other agent architectures. 

The wrapper collects a snapshot of SPARK’s current state 
as well as the previous decisions that led to that state. It 
uses SPARK’s expanded introspective predicates to extract 
the portions of its underlying intention structure relevant to 
its current intentions, building this structure by recursively 
querying for the supporting elements of intentions and 
procedures.  Example queries include: What are the current 
intentions?  What is the procedure instance that led to 
intention X?  What are the preconditions that were met 
before procedure P could be executed? 
 

After collecting the snapshot, the wrapper stores it in a 
SPARK-independent task execution action database. This 
schema reflects that most task execution systems share the 
same common structure.  While the current terminology in 
our schema is consistent with SPARK’s, the concepts are 
general and consistent with other cognitive architectures. 
For example, “procedures” in our schema are equivalent to  
“knowledge sources” in BB* and other blackboard 
architectures, “procedure instances” are equivalent to 
“Knowledge Source Activation Records (KSARs)”, etc. 
(Hayes-Roth 1985).  The database records the relationships 
between key entities relevant to the agent’s current state, 
for example, which intentions were established by which 
procedure instances, which procedure a given procedure 
instance instantiates, and which of a procedure’s 
termination conditions were satisfied and which were not. 
 
We achieve multiple design goals by creating a system-
specific wrapper and a generic action schema.  When new 
task execution systems (other than SPARK) need to be 
explained, the generic action schema is reused and only a 
new wrapper is needed. .No changes are required to the 
justification representation or the explanation strategies.  
Also, the action schema can be reused by other cognitive 
agent components for purposes beyond explanation, such 
as state capture, archiving, or snapshotting. 

Generating Formal Justifications 
A cognitive agent’s actions should be supported by 
justifications that are used to derive and present 
understandable explanations to end-users.  These 
justifications need to reflect both how the actions support 
various user goals, and how the particular actions chosen 
by the agent were guided by the state of the world.  More 
specifically, our approach to task justification breaks down 
the justification of a question about a particular task T into 
three complementary strategies, described here using 
terminology from SPARK:  
• Relevance: Demonstrate that fulfilling T will further one 

of the agent’s high-level goals, which the user already 
knows about and accepts 

• Applicability: Demonstrate that the conditions necessary 
to start T were met at the time T started (possibly 
including the conditions that led T to be preferred over 
alternative tasks) 

• Termination: Demonstrate whether one or more of the 
conditions necessary to terminate T has not been met. 

This three-strategy approach contrasts with previous 
approaches to explanation, most of which dealt with 
explaining inference (Scott et al. 1984, Wick & Thompson 
1992). Previous approaches generally have not dealt with 
termination issues, and they also generally have not 
distinguished between relevance and applicability 
conditions.  These are critical aspects of task processing 
and thus are important new issues for explanation.   
 
Justifications can be seen and represented as proofs of how 
information was manipulated to come to a particular 



conclusion.  We chose to leverage the Inference Web 
infrastructure (McGuinness & Pinheiro da Silva, 2004) for 
providing explanations.  Inference Web was designed to 
provide a set of components for representing, generating, 
manipulating, summarizing, searching, and presenting 
explanations for answers from question answering agents.  
At Inference Web’s core is an Interlingua for representing 
provenance, justification, and trust encodings called the 
Proof Markup Language (PML) (Pinheiro da Silva, 
McGuinness, & Fikes, 2006). PML provides core 
representational constructs for provenance, information 
manipulation steps, and trust.  Inference Web also provides 
PML tools for interactive browsing, summarization, 
validating, and searching (McGuinness, et al, 2006).  In 
this work, we expanded the inference web infrastructure 
and underlying components to provide support for 
explaining task execution systems and learning. 
 
PML documents contain encodings of behavior 
justifications using PML node sets.  An OWL 
(McGuinness & van Harmelen 2004) specification of all 
PML terms is available, which separates out provenance1, 
justifications2, and trust3.  PML node sets are the main 
components of OWL documents describing justifications 
for application answers published on the Web.  Each node 
set represents a step in a proof whose conclusion is 
justified by any of a set of inference steps associated with a 
node set. A task execution justification is always a 
justification of why an agent is executing a given task T. 
The final conclusion of the justification is a FOL sentence 
saying that T is currently being executed.  There are three 
antecedents for this final conclusion, corresponding to the 
three strategies discussed above. Each antecedent is 
supported by a justification fragment based on additional 
introspective predicates.  
 
It is important to note that all the task processing 
justifications share a common structure that is rich enough 
to encode provenance information needed to answer the 
explanation requests identified so far. By inspecting the 
execution state via introspective predicates, explanation 
components can gather enough provenance information to 
support a wide range of explanations.  

Producing Explanations  
Different users may need different types of explanations.   
In order to personalize explanations, ICEE uses 
explanation strategies. An explanation strategy provides a 
method for retrieving provenance and inference 
information from justifications, selecting the information 
relevant to the request, and presenting the information to 
the user.  Given the wide range of questions that a user 
might want to ask, we conducted a study which helped us 
to identify which questions users would find more 
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immediately helpful in their daily interactions with a 
system like CALO.  The feedback from these users 
motivates our choice of supported explanation and follow-
up strategies, as discussed in the next section. 
 
User modeling and strategy selection are handled by the 
explanation dispatcher. Currently, user modeling is 
restricted to user preferences.  Additional approaches 
based on user interaction and machine learning techniques 
are under investigation. The explanation strategies are 
closely tied to the explanation request types discussed 
above.  In the example scenario presented earlier, the user 
asked a question about subtask motivation, and the 
explanation used a strategy of revealing task hierarchy.  
Other strategies include exposing preconditions or 
termination conditions, revealing meta-information about 
task dependencies, or explaining provenance information 
related to task preconditions or other task knowledge. 
 
ICEE also provides context-dependent follow-up questions 
for the user. Follow-up questions might include requests 
for additional detail, clarifying questions about the 
explanation that has been provided, or questions 
essentially requesting that an alternate strategy be used to 
answer the original question.  Figure 1 shows an example 
user interface linked to ICEE, in which a list of currently 
executing tasks is provided to the user.  The user has 
requested an explanation of the motivation for a subtask of 
the first task, and an explanation is provided along with 
three suggested follow-up questions.  

Establishing Trust in Cognitive Agents  
To evaluate the use and effect of explanation in cognitive 
agents, we conducted a preliminary trust study among a set 
of CALO users. We studied 10 users from SRI 
International who performed a variety of tasks with 
individual CALO agents over approximately two weeks. 
The users spanned a wide range of ages, backgrounds, and 
prior experience with CALO. Participants were informed 
before the study that they would be interviewed about 
system trust and understanding.  We then interviewed each 
of the users, following a structured script of questions with 
both free-form and rank-based answers. We had two 
primary aims for this study: first, to identify what factors 
users believe influence their trust in a complex cognitive 
agent; and second, to identify which types of questions, if 
any, users would like to ask a cognitive assistant to better 
understand its answers. 
 
Preliminary results from this study show that 
understanding system decisions, including any unexpected 
decisions (e.g., inconsistencies), and thus establishing trust 
in a system as complex as CALO, requires a multi-pronged 
approach.  While trust in any system generally requires a 
series of positive interactions over an extended period of 
time, the complexity and constant change of an adaptive 



agent presents additional issues.  Many users identified 
two key factors that would aid in building trust. 
 
The first factor is transparency. Regardless of their 
familiarity with the system or their technical background, 
most users were leery of the opaqueness of the system.  
When actions were taken by the system for which the 
underlying computational reasoning was not apparent, the 
users mistrusted the results.  Even when results appeared 
reasonable, they sought to verify the results rather than 
trusting them outright, fearful that a result may be 
anecdotal or based on inappropriate information.  These 
users identified explanations of system behavior, providing 
transparency into its reasoning and execution, as a key way 
of understanding answers and thus establishing trust. 
 
The second factor is provenance.  Many users commented 
that, when presented with a result in CALO, they did not 
know whether they could trust the result because they did 
not know what source information was used by the system.  
These users reported that explanations of source 
provenance would enable them to trust results without the 
need for much, if any, further verification. 
 
Previous work on building trust recommendations 
(McGuinness et al. 2006) has shown the complexity of 
understanding the notion of trust, and how explanation of 
deductive reasoning can help users to establish and build 
trust.  We believe that explanation of task execution in 
cognitive agents, particularly in the presence of learned 
behaviors, can similarly be key to helping users to build 
trust.  We are continuing to evaluate the results of our trust 
study, and plan to use the results to guide our future work. 

Related Work and Discussion  
There has been an abundance of work in explaining expert 
systems and, to a lesser extent, explaining automated 
reasoning systems. Most of these have focused on some 
notion of explaining the deductive trace of declarative 
rules.   Previous work on Inference Web and related work 
explaining hybrid reasoners added to the field by focusing 
on settings that are web-based or distributed.  Our current 

work further expands the coverage to support explanations 
of task executions in the presence of learned knowledge, 
declarative rule processing, and provenance. 

Figure 1:  An example explanation dialogue, with 
suggested follow-up questions. 

 
The literature on automated explanation research that 
explicitly addresses explaining actions is sparse. (Johnson 
1994) presents a module to explain a Soar agent’s actions 
by reconstructing the context in which action decisions 
were made, and then tweaking that context (hypothetically) 
to discover the elements of the context that were critical to 
the decision. While Johnson’s approach does have some 
similarities with the way we handle gating conditions, it 
does not deal with relevance and termination strategies that 
are important to our agent explanation module. Earlier, 
(Schulman and Hayes-Roth 1988) developed a BB1 
module that explains actions using the architecture’s 
control plan, but it does not address explaining when the 
control plan does not exist, as is the case in CALO and 
most other intelligent architectures. Work on plan 
description (Mellish & Evans 1989, Young 1999, Myers 
2006) has focused on summarizing an agent’s aggregate 
behavior, rather than justifying individual task choices.  
Our work thus fills an important gap in explaining agent 
actions, providing fine-grained explanations of a wide 
range of agent activities, taking into account more aspects 
of BDI agent architectures, while using an approach that is 
compatible with explaining hybrid reasoning components, 
such as standard FOL reasoners.  One promising area of 
future work would be to allow the user to switch between 
coarse-grained and fine-grained explanations of agent 
activity, combining our work with the previous approach. 
 
Driven by the needs of explaining cognitive assistants, we 
have focused on explanation infrastructures that can work 
with task execution systems as well as with deductive 
reasoners and learning components.  We have described  
current progress on designing and implementing an 
extensible and flexible architecture that is capable of 
explaining the breadth required by cognitive assistants. We 
began our work by producing an enumeration and 
categorization of classes of cognitive assistant 
explanations, which was further motivated and refined 
using the initial results of our trust study.  We also 
analyzed the existing execution environment to identify the 
actions taken that would need to be explained, leading to a 
characterization of the SPARK execution environment.  
We believe that this characterization is representative not 
just of SPARK, but also of other agent architectures, most 
notably BDI-based agents and blackboard-based systems. 
The above characterization is integrated with an 
explanation architecture capable of explaining standard 
reasoners and hybrid theorem proving environments, an 
approach we are further testing as part of a new system, 
funded by the DARPA Integrated Learning program (IL 
2006). 
 
Our architecture and implementation demonstrates that an 
explanation mechanism initially designed for explaining 
deductive reasoning can also be successfully applied to 



explaining task-oriented reasoning. We developed a three 
strategy approach to explaining task execution including 
relevance, applicability, and termination.  Additionally, 
work devoted simply to explaining task execution has not 
traditionally focused on explaining a broader setting 
including deduction and provenance. We developed a 
framework for extracting and representing the state and 
history of a task system’s reasoning, a framework that is 
already proving to be useful for building trust and 
explanation services in other agent activities.  
 
ICEE includes initial implementations of all of the 
described components, and is seeded with a limited 
number of strategies, as prioritized by our trust study.  
Current work includes expanding these components to 
provide advanced functionality; additional capabilities for 
handling the results of procedure learning (from instruction 
and demonstration) that extend and/or update the 
procedures that the task execution system uses; as well as a 
strong focus on explaining conflicts, explaining failures, 
and further explaining knowledge provenance.   

Conclusions 
If cognitive agents are to achieve their potential as trusted 
assistants, they must be able to explain their actions and 
recommendations.  In this paper, we presented our 
explanation infrastructure and described our 
implementation for the CALO cognitive assistant. While 
we focused here on explaining the core task processing 
component, our solution provides a uniform way of 
encoding task execution, deductive reasoning, and learning 
components as justifications.  The approach is integrated 
with the Inference Web infrastructure for supporting 
knowledge provenance so that these explanations may be 
augmented with source information, improving end-user 
understanding. Further evaluation has demonstrated that a 
better understanding of answers is a key factor for users to 
establish trust in cognitive assistants. The primary 
contributions of this paper are (1) the design and reference 
implementation of a general and reusable explanation 
infrastructure for cognitive assistants that integrate task 
processing, deductive reasoning, and learning; and (2) a 
supporting design describing the necessary information for 
explaining task processing in changing environments 
(including the specification of the relevance, applicability, 
termination strategy, and the categorization of explanation 
requests and follow-up strategies), with a focus on 
changing environments, such as those being updated by 
learners. 
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